【題目】已知 .
(1)求tan2α的值;
(2)求cosβ的值.
【答案】
(1)解:∵ .
∴cosα= = ,tanα= =4 ,
∴tan2α= =﹣
(2)解:∵ .
∴﹣ <β﹣α<0,可得:sin(β﹣α)=﹣ =﹣ ,
∴cosβ=cos[(β﹣α)+α]=cos(β﹣α)cosα﹣sin(β﹣α)sinα= =
【解析】(1)由已知利用同角三角函數(shù)基本關(guān)系式可求cosα,tanα,進(jìn)而利用二倍角的正切函數(shù)公式可求tan2α的值.(2)由已知可求范圍﹣ <β﹣α<0,利用同角三角函數(shù)基本關(guān)系式可求sin(β﹣α)的值,由β=(β﹣α)+α,利用兩角和的余弦函數(shù)公式即可計(jì)算得解.
【考點(diǎn)精析】本題主要考查了兩角和與差的正切公式的相關(guān)知識(shí)點(diǎn),需要掌握兩角和與差的正切公式:才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)為,其左頂點(diǎn)在圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線交橢圓于兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為(點(diǎn)與點(diǎn)不重合),且直線與軸的交于點(diǎn),試問(wèn)的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列命題:
①乘積(a+b+c+d)(p+q+r)(m+n)展開(kāi)式的項(xiàng)數(shù)是24;
②由1、2、3、4、5組成沒(méi)有重復(fù)數(shù)字且1、2都不與5相鄰的五位數(shù)的個(gè)數(shù)是36;
③某會(huì)議室第一排共有8個(gè)座位,現(xiàn)有3人就座,若要求每人左右均有空位,那么不同的坐法種數(shù)為24;
④已知(1+x)8=a0+a1x+…+a8x8 , 其中a0 , a1 , …,a8中奇數(shù)的個(gè)數(shù)為2.
其中真命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定兩個(gè)長(zhǎng)度為1的平面向量 和 ,它們的夾角為120°.如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧 上變動(dòng).若 ,其中x,y∈R,試求x+y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的五面體中,面為直角梯形, ,平面 平面, , 是邊長(zhǎng)為2的正三角形.
(1)證明: ;
(2)證明: 平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為預(yù)防H1N1病毒暴發(fā),某生物技術(shù)公司研制出一種新流感疫苗,為測(cè)試該疫苗的有效性(若疫苗有效的概率小于90%,則認(rèn)為測(cè)試沒(méi)有通過(guò)),公司選定2000個(gè)流感樣本分成三組,測(cè)試結(jié)果如表:
A組 | B組 | C組 | |
疫苗有效 | 673 | x | y |
疫苗無(wú)效 | 77 | 90 | z |
已知在全體樣本中隨機(jī)抽取1個(gè),抽到B組疫苗有效的概率是0.33.
(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個(gè)測(cè)試結(jié)果,問(wèn)應(yīng)在C組抽取多少個(gè)?
(3)已知y≥465,z≥25,求不能通過(guò)測(cè)試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列結(jié)論: ①已知函數(shù)f(x)是定義在R上的奇函數(shù),若f(﹣1)=2,f(﹣3)=﹣1,則f(3)<f(﹣1);
②函數(shù)y=log (x2﹣2x)的單調(diào)遞增減區(qū)間是(﹣∞,0);
③已知函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2 , 則當(dāng)x<0時(shí),f(x)=﹣x2;
④若函數(shù)y=f(x)的圖象與函數(shù)y=ex的圖象關(guān)于直線y=x對(duì)稱(chēng),則對(duì)任意實(shí)數(shù)x,y都有f(xy)=f(x)+f(y).
則正確結(jié)論的序號(hào)是(請(qǐng)將所有正確結(jié)論的序號(hào)填在橫線上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司對(duì)營(yíng)銷(xiāo)人員有如下規(guī)定:
①年銷(xiāo)售額 (萬(wàn)元)在8萬(wàn)元以下,沒(méi)有獎(jiǎng)金;
②年銷(xiāo)售額 (萬(wàn)元), 時(shí),獎(jiǎng)金為萬(wàn)元,且, ,且年銷(xiāo)售額越大,獎(jiǎng)金越多;
③年銷(xiāo)售額超過(guò)64萬(wàn)元,按年銷(xiāo)售額的10%發(fā)獎(jiǎng)金.
(1)求獎(jiǎng)金y關(guān)于x的函數(shù)解析式;
(2)若某營(yíng)銷(xiāo)人員爭(zhēng)取獎(jiǎng)金 (萬(wàn)元),則年銷(xiāo)售額 (萬(wàn)元)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)偶函數(shù)的導(dǎo)函數(shù)是函數(shù),當(dāng)時(shí), ,則使得成立的的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com