16.已知a>0且 a≠1,函數(shù)f(x)=$\frac{3{a}^{x}+1}{{a}^{x}+1}$+3loga$\frac{1+x}{1-x}$(-$\frac{1}{2}$≤x≤$\frac{1}{2}$),設(shè)函數(shù)f(x)的最大值是A,最小值是B,則( 。
A.A-B=4B.A+B=4C.A-B=6D.A+B=6

分析 討論0<a<1和a>1,判斷函數(shù)f(x)的單調(diào)性,結(jié)合指數(shù)函數(shù)和對數(shù)函數(shù)的運算法則進(jìn)行化簡即可.

解答 解:f(x)=$\frac{3{a}^{x}+1}{{a}^{x}+1}$+3loga$\frac{1+x}{1-x}$=$\frac{3({a}^{x}+1)-2}{{a}^{x}+1}$+3loga$\frac{(x-1)+2}{1-x}$
=3-$\frac{2}{{a}^{x}+1}$+3loga(-1-$\frac{2}{x-1}$),
若a>1,則-$\frac{2}{{a}^{x}+1}$為增函數(shù),3loga(-1-$\frac{2}{x-1}$)在-$\frac{1}{2}$≤x≤$\frac{1}{2}$上為增函數(shù),
即f(x)在-$\frac{1}{2}$≤x≤$\frac{1}{2}$上為增函數(shù),
此時函數(shù)的最大值A(chǔ)=f($\frac{1}{2}$),最小值B=f(-$\frac{1}{2}$),
若0<a<1,則-$\frac{2}{{a}^{x}+1}$為減函數(shù),3loga(-1-$\frac{2}{x-1}$)在-$\frac{1}{2}$≤x≤$\frac{1}{2}$上為減函數(shù),
即f(x)在-$\frac{1}{2}$≤x≤$\frac{1}{2}$上為減函數(shù),
此時函數(shù)的最大值A(chǔ)=f(-$\frac{1}{2}$),最小值B=f($\frac{1}{2}$),
則A+B=f(-$\frac{1}{2}$)+f($\frac{1}{2}$)=$\frac{3{a}^{-\frac{1}{2}}+1}{{a}^{-\frac{1}{2}}+1}$+3loga$\frac{1-\frac{1}{2}}{1+\frac{1}{2}}$+$\frac{3{a}^{\frac{1}{2}}+1}{{a}^{\frac{1}{2}}+1}$+3loga$\frac{1+\frac{1}{2}}{1-\frac{1}{2}}$
=$\frac{3+{a}^{\frac{1}{2}}}{1+{a}^{\frac{1}{2}}}$+$\frac{3{a}^{\frac{1}{2}}+1}{{a}^{\frac{1}{2}}+1}$+3loga$\frac{1}{3}$+3loga3
=$\frac{4+4{a}^{\frac{1}{2}}}{1+{a}^{\frac{1}{2}}}$+3loga1
=4+0=4,
故選:B

點評 本題主要考查函數(shù)最值的應(yīng)用,根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,以及利用對應(yīng)的運算法則是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=\sqrt{3}sinxcosx+{cos^2}x$.
(Ⅰ)求f(x)的最小正周期和單調(diào)增區(qū)間;
(Ⅱ)求f(x)在區(qū)間$[-\frac{π}{2},0]$上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)正數(shù)a、b、c、d滿足a+b=cd=λ(λ為常數(shù)),若ab≤c+d且取等號時,a、b、c、d的取值唯一,則常數(shù)λ=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)=loga(x3-2x)(a>0且a≠1)在區(qū)間(-$\sqrt{2}$,-1)內(nèi)恒有f(x)>0,則f(x)的單調(diào)遞減區(qū)間為( 。
A.(-∞,-$\frac{{\sqrt{6}}}{3}$),($\frac{{\sqrt{6}}}{3}$,+∞)B.(-$\sqrt{2}$,-$\frac{{\sqrt{6}}}{3}$),($\sqrt{2}$,+∞)C.(-$\sqrt{2}$,-$\frac{{\sqrt{6}}}{3}$),($\frac{{\sqrt{6}}}{3}$,+∞)D.(-$\frac{{\sqrt{6}}}{3}$,$\frac{{\sqrt{6}}}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)p:x<1,q:-1<x<1,則p是q成立的(  )
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知m∈R,命題p:方程$\frac{x^2}{m+1}+\frac{y^2}{m-1}=1$表示雙曲線,命題q:?x∈R,x2+mx+m<0.
(1)若命題q為真命題,求m取值范圍;
(2)若命題p∧q為真命題,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)y=f(x-1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線( 。⿲ΨQ.
A.x=-1B.x=1C.$x=\frac{1}{2}$D.$x=-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)若x∈[0,2π].求函數(shù)y=$\sqrt{\frac{\sqrt{3}}{2}-sinx}$的定義域;
(2)求函數(shù)y=$\sqrt{2-|x-4|}$+lg(-sinx)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=x2-ax+b,a,b∈R.
(1)當(dāng)a=2時,記函數(shù)|f(x)|在[0,4]上的最大值為g(b),求g(b)的最小值;
(2)存在實數(shù)a,使得當(dāng)x∈[0,b]時,2≤f(x)≤6恒成立,求b的最大值及此時a的值.

查看答案和解析>>

同步練習(xí)冊答案