18.已知函數(shù)f(x)=x3-3x,若過(guò)點(diǎn)M(2,t)可作曲線y=f(x)的兩條切線,且點(diǎn)M不在函數(shù)f(x)的圖象上,則實(shí)數(shù)t的值為-6.

分析 設(shè)切點(diǎn)為(a,a3-3a),利用導(dǎo)數(shù)的幾何意義,求得切線的斜率k=f′(a),利用點(diǎn)斜式寫出切線方程,將點(diǎn)M代入切線方程,可得關(guān)于a的方程有兩個(gè)不同的解,利用參變量分離可得2a3-6a2=-6-m,令g(x)=2x3-6x2,利用導(dǎo)數(shù)求出g(x)的單調(diào)性和極值,則根據(jù)y=g(x)與y=-6-t有兩個(gè)不同的交點(diǎn),即可得到t的值.

解答 解:設(shè)切點(diǎn)為(a,a3-3a),
f(x)=x3-3x,可得f′(x)=3x2-3,
即有切線的斜率k=f′(a)=3a2-3,
由點(diǎn)斜式可得切線方程為y-(a3-3a)=(3a2-3)(x-a),
切線過(guò)點(diǎn)M(2,t),
可得t-(a3-3a)=(3a2-3)(2-a),即2a3-6a2=-6-t,
由過(guò)點(diǎn)M(2,t)(t≠2)可作曲線y=f(x)的兩條切線,
即有關(guān)于a的方程2a3-6a2=-6-t有兩個(gè)不同的根,
令g(x)=2x3-6x2,
g′(x)=6x2-12x=0,解得x=0或x=2,
當(dāng)x<0時(shí),g′(x)>0,當(dāng)0<x<2時(shí),g′(x)<0,當(dāng)x>2時(shí),g′(x)>0,
g(x)在(-∞,0)上單調(diào)遞增,在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,
當(dāng)x=0時(shí),g(x)取得極大值g(0)=0,
當(dāng)x=2時(shí),g(x)取得極小值g(2)=-8,
關(guān)于a的方程2a3-6a2=-6-t有兩個(gè)不同的根,
等價(jià)于y=g(x)與y=-6-t的圖象有兩個(gè)不同的交點(diǎn),
可得-6-t=-8或-6-t=0,解得t=2或-6,
由M不在函數(shù)f(x)的圖象上,可得t=-6.
故答案為:-6.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,導(dǎo)數(shù)的幾何意義即在某點(diǎn)處的導(dǎo)數(shù)即該點(diǎn)處切線的斜率,利用導(dǎo)數(shù)研究函數(shù)的切線問(wèn)題,解題時(shí)要注意運(yùn)用切點(diǎn)在曲線上和切點(diǎn)在切線上.運(yùn)用了轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在平面直角坐標(biāo)系xOy中,以點(diǎn)(1,0)為圓心,且與直線x-y-3=0相切的圓的標(biāo)準(zhǔn)方程為(x-1)2+y2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,∠A,∠B,∠C所對(duì)的邊分別為a,b,c.
(1)若(a-sinB)cosC=cosBsinC,且c=1,求∠C的大。
(2)若△ABC的面積為$\frac{1}{4}$a2,求$\frac{(b+c)^{2}}{2bc}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=ax3+blnx在點(diǎn)(1,0)處的切線的斜率為1.
(1)求a,b的值;
(2)是否存在實(shí)數(shù)t使函數(shù)F(x)=f(x)+lnx的圖象恒在函數(shù)g(x)=$\frac{t}{x}$的圖象的上方,若存在,求出t的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列命題的逆命題為真命題的是( 。
A.若x>2,則(x-2)(x+1)>0B.若x2+y2≥4,則xy=2
C.若x+y=2,則xy≤lD.若a≥b,則ac2≥bc2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞減函數(shù)是(  )
A.f(x)=${x}^{\frac{1}{2}}$B.f(x)=x3C.f(x)=($\frac{1}{2}$)xD.f(x)=lo${g}_{\frac{1}{2}}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.曲線f(x)=2lnx+$\frac{1}{x}$在點(diǎn)(1,f(1))處的切線方程為y=x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.若圓C經(jīng)過(guò)坐標(biāo)原點(diǎn),且圓心在直線y=-2x+3上運(yùn)動(dòng),求當(dāng)半徑最小時(shí)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若函數(shù)f(x)=lg($\frac{2}{1-x}$+a)是奇函數(shù),則使f(x)<0的x的取值范圍是( 。
A.(0,1)B.(-1,0)C.(-∞,0)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案