分析 (1)求出f(x)的導(dǎo)數(shù),由題意可得切線的斜率,解方程可得a=0,b=1;
(2)求出F(x)的解析式,假設(shè)存在實(shí)數(shù)t,即有2lnx>$\frac{t}{x}$,即t<2xlnx恒成立,設(shè)g(x)=2xlnx,求出導(dǎo)數(shù),單調(diào)區(qū)間,可得極小值,也為最小值,由恒成立思想可得t的范圍.
解答 解:(1)函數(shù)f(x)=ax3+blnx的導(dǎo)數(shù)為f′(x)=3ax2+$\frac{x}$,
由題意可得f′(1)=3a+b=1,f(1)=a=0,
解得a=0,b=1;
(2)F(x)=f(x)+lnx=2lnx,假設(shè)存在實(shí)數(shù)t使函數(shù)F(x)的圖象
恒在函數(shù)g(x)=$\frac{t}{x}$的圖象的上方,即為
2lnx>$\frac{t}{x}$,即t<2xlnx恒成立,
設(shè)g(x)=2xlnx,g′(x)=2(lnx+1),
當(dāng)x>$\frac{1}{e}$時(shí),g′(x)>0,g(x)遞增;
當(dāng)0<x<$\frac{1}{e}$時(shí),g′(x)<0,g(x)遞減.
可得g(x)在x=$\frac{1}{e}$處取得極小值,且為最小值-$\frac{2}{e}$,
可得t<-$\frac{2}{e}$,則存在實(shí)數(shù)t∈(-∞,-$\frac{2}{e}$),使函數(shù)F(x)的圖象
恒在函數(shù)g(x)=$\frac{t}{x}$的圖象的上方.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)區(qū)間、極值和最值,考查不等式恒成立問(wèn)題的解法,注意運(yùn)用參數(shù)分離和構(gòu)造函數(shù),求最值,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,6] | B. | [6,+∞) | C. | (-∞,-4] | D. | [-4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2x-y≥0 | B. | 2x-y≤3 | C. | x+y≤6 | D. | x+y<2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,2) | B. | [-1,2) | C. | (-∞,-1]∪[2,+∞) | D. | (-∞,-1)∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com