14.函數(shù)$y=3sin(2x+φ+\frac{π}{3})$是偶函數(shù),且$|φ|≤\frac{π}{2}$,則φ=$\frac{π}{6}$.

分析 根據(jù)誘導(dǎo)公式和三角函數(shù)的奇偶性可得φ+$\frac{π}{3}$=$\frac{π}{2}$+kπ,解出φ即可.

解答 解:∵$y=3sin(2x+φ+\frac{π}{3})$是偶函數(shù),
∴φ+$\frac{π}{3}$=$\frac{π}{2}$+kπ,k∈Z.
解得φ=$\frac{π}{6}$+kπ,k∈Z.
∵|φ|$≤\frac{π}{2}$,
∴φ=$\frac{π}{6}$.
故答案為:$\frac{π}{6}$.

點評 本題考查了三角函數(shù)的性質(zhì),誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)Sn等差數(shù)列{an}的前n項和.若a3+a5+a7=21,則S9=( 。
A.42B.45C.49D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知y=f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,則下列結(jié)論正確的是(  )
A.f(x)在(-3,-1)上先增后減B.x=-2是函數(shù)f(x)極小值點
C.f(x)在(-1,1)上是增函數(shù)D.x=1是函數(shù)f(x)的極大值點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x2-ax-4,(a∈R).
(Ⅰ)若f(x)在[0,2]上單調(diào),求a的范圍;
(Ⅱ)若f(x)在區(qū)間[a,a+1]上的最小值為-8,求a的值.
(Ⅲ)若對任意的a∈R,總存在x0∈[1,2],使得|f(x0)|≥m成立,求m的取值范圍.
(Ⅳ)若函數(shù)g(x)=x2-|f(x)|在區(qū)間(-∞,-2)和(2,+∞)上均單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在下列函數(shù)中,同時滿足:①是奇函數(shù),②以π為周期的是( 。
A.y=sinxB.y=cosxC.y=tanxD.y=tan2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=sin2x+$\sqrt{3}$sinxcosx+$\frac{1}{2}$.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A,B,C所對的邊分別是a,b,c且函數(shù)f(x)在x=A時取得最大值a,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.?dāng)?shù)列{an}中,a1=2,且an=$\frac{{2{a_{n-1}}}}{{2+{a_{n-1}}}}$(n≥2).
(1)求證:$\{\frac{1}{a_n}\}$為等差數(shù)列,并求an;
(2)令bn=a2n-1•a2n+1,求數(shù)列{bn}的前n項的和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)i為虛數(shù)單位,復(fù)數(shù)z=(a3-a)+$\frac{a}{(1-a)}$i,(a∈R)為純虛數(shù),則a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,BC=$\sqrt{2}$,∠B=$\frac{π}{4}$,則AB+2AC的最小值為$\sqrt{3}+1$.

查看答案和解析>>

同步練習(xí)冊答案