3.設(shè)i為虛數(shù)單位,復數(shù)z=(a3-a)+$\frac{a}{(1-a)}$i,(a∈R)為純虛數(shù),則a的值為-1.

分析 由已知復數(shù)為純虛數(shù),確定出a的值即可.

解答 解:∵設(shè)i為虛數(shù)單位,復數(shù)z=(a3-a)+$\frac{a}{(1-a)}$i,(a∈R)為純虛數(shù),
∴a3-a=0,且$\frac{a}{1-a}$≠0,
解得:a=-1或a=1(舍去)或a=0(舍去),
則a的值為-1,
故答案為:-1.

點評 此題考查了復數(shù)代數(shù)形式的混合運算,熟練掌握復數(shù)的性質(zhì)是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{3x}{a}$-2x2+lnx,其中a為正常數(shù).
(1)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[2,4]上為單調(diào)遞增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)$y=3sin(2x+φ+\frac{π}{3})$是偶函數(shù),且$|φ|≤\frac{π}{2}$,則φ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+(2a-2)x,x≤0}\\{{x}^{3}-(3a+3){x}^{2}+ax,x>0}\end{array}\right.$,若曲線y=f(x)在點Pi(xi,f(xi))(i=1,2,3,其中x1,x2,x3互不相等)處的切線互相平行,則a的取值范圍是(-1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.求y=$\sqrt{1+x}$+2$\sqrt{1-x}$的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=1+2sin(2x-$\frac{π}{3}$).
(1)用五點法作圖作出f(x)在x∈[0,$\frac{π}{2}$]的圖象;
(2)求f(x)在x∈[$\frac{π}{4}$,$\frac{π}{2}$]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知sinαcosα=$\frac{60}{169}$,π<α<$\frac{5π}{4}$,那么sinα-cosα=$\frac{7}{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.直線xsinθ+$\sqrt{3}$y+2=0的傾斜角的取值范圍是(  )
A.[${\frac{π}{6}$,$\frac{5π}{6}}$]B.[${\frac{π}{3}$,$\frac{2π}{3}}$]C.[0,$\frac{π}{6}}$]∪[${\frac{5π}{6}$,π]D.[0,$\frac{π}{3}}$]∪[${\frac{2π}{3}$,π]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若直線l:y=k(x-$\sqrt{2}$)與曲線x2-y2=1(x>0)相交于A、B兩點,則直線l的傾斜角的取值范圍是($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$).

查看答案和解析>>

同步練習冊答案