分析 (Ⅰ)由題意可求周期T,利用周期公式可求ω,由$f(\frac{π}{8})=sin({\frac{π}{4}+φ})=0$,結合范圍-π<φ<0,可求φ,從而可求f(x)的解析式,由$2x-\frac{π}{4}=\frac{π}{2}+kπ,k∈Z$可解得f(x)對稱軸方程.
(Ⅱ)分別求出對應的x值和y值列表,然后描點,再用平滑曲線連接得函數(shù)圖象.
解答 解:(Ⅰ)∵f(x)的兩個相鄰的對稱中心分別為$({\frac{π}{8},0})$,$({\frac{5π}{8},0})$,
∴${T}=\frac{4π}{8}×2=\frac{π}{2}×2=\frac{2π}{2}=π$,
∴ω=2,
∴f(x)=sin(2x+φ),
∵$f(\frac{π}{8})=sin({\frac{π}{4}+φ})=0$,
∴$\frac{π}{4}+φ=kπ,k∈Z$,
∴$φ=kπ-\frac{π}{4},k∈Z$,
∵-π<φ<0,
∴$φ=-\frac{π}{4}$,
∴$f(x)=sin({2x-\frac{π}{4}})$.…(4分)
由$2x-\frac{π}{4}=\frac{π}{2}+kπ,k∈Z$,得$x=\frac{3π}{8}+\frac{kπ}{2},k∈Z$,
所以f(x)對稱軸方程為$x=\frac{3π}{8}+\frac{kπ}{2},k∈Z$,…(6分)
(Ⅱ)列表:
x | $\frac{π}{8}$ | $\frac{3π}{8}$ | $\frac{5π}{8}$ | $\frac{7π}{8}$ | $\frac{9π}{8}$ |
$2x-\frac{π}{4}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
f(x) | 0 | 1 | 0 | -1 | 0 |
點評 本題考查了y=Asin(ωx+φ)型函數(shù)的有關概念,考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,考查利用五點作圖法作函數(shù)的圖象,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[-1,\sqrt{2}]$ | B. | $[-\sqrt{2},\sqrt{2}]$ | C. | $[\sqrt{2}-2,2]$ | D. | $[1-\sqrt{2},1+\sqrt{2}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{{x^'}^2}}{4}+\frac{{{y^'}^2}}{3}=1$ | B. | $\frac{{{y^'}^2}}{4}+\frac{{{x^'}^2}}{3}=1$ | C. | x'2+y'2=1 | D. | x'2+y'2=12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 210種 | B. | 630種 | C. | 420種 | D. | 840種 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com