19.從5位男同學(xué)和4位女同學(xué)中選出3位同學(xué)分別擔(dān)任數(shù)、語、外三科的科代表,要求選出的3位同學(xué)中男女都要有,則不同的選派方案共有(  )
A.210種B.630種C.420種D.840種

分析 題目要求有男女同學(xué)九人選三個到3個班擔(dān)任數(shù)、語、外三科的科代表是三個元素在九個位置排列,要求這3位班主任中男女同學(xué)都有,則選的都是男同學(xué)和選的都是女同學(xué)不合題意就需要從總數(shù)中去掉.

解答 解:∵共有男女同學(xué)九人選三個到3個擔(dān)任數(shù)、語、外三科的科代表共有A93種結(jié)果,
要求這3位班主任中男女同學(xué)都有,則選的都是男同學(xué)和選的都是女同學(xué)不合題意,
選的都是男同學(xué)有A53種結(jié)果,
選的都是女同學(xué)有A43種結(jié)果,
∴滿足條件的方案有A93-(A53+A43)=420,
故選:C.

點評 排列與組合問題要區(qū)分開,若題目要求元素的順序則是排列問題,排列問題要做到不重不漏,有些題目帶有一定的約束條件,解題時要先考慮有限制條件的元素,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知△ABC的面積為$\frac{{\sqrt{3}}}{2}$,AC=2,∠BAC=$\frac{π}{3}$,則∠ACB=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1坐標(biāo)原點為點O,有頂點坐標(biāo)為(2,0),離心率e=$\frac{{\sqrt{3}}}{2}$,過橢圓右焦點傾斜角為30°的直線交橢圓與點A,B兩點.
(1)求橢圓的方程.
(2)求三角形OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=cosx-lnx,實數(shù)a,b,c滿足f(a)f(b)f(c)<0(0<a<b<c<π),若實數(shù)x0是f(x)=0的根,那么下列不等式中不可能成立的是( 。
A.x0<cB.x0>cC.x0<bD.x0>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的兩個相鄰的對稱中心分別為(${\frac{π}{8}$,0),(${\frac{5π}{8}$,0).
(Ⅰ)求f(x)的解析式及其對稱軸方程;
(Ⅱ)利用五點法畫出函數(shù)f(x)在[$\frac{π}{8}$,$\frac{9π}{8}}$]上的簡圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A,B,C的對邊分別是a,b,c,滿足2acosC+c=2b.
(1)求角A的大小;
(2)若a=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,已知點A(-1,1),P是動點,且三角形POA的三邊所在直線的斜率滿足kOP+kOA=kPA.求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,要在山坡上A、B兩處測量與地面垂直的鐵塔CD的高,由A、B兩處測得塔頂C的仰角分別為60°和45°,AB長為40m,斜坡與水平面成30°角,則鐵塔CD的高為$\frac{40\sqrt{3}}{3}$m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知△ABC的周長為10,且A(-2,0),B(2,0),則C點的軌跡方程是( 。
A.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{9}$=1(y≠0)B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(y≠0)
C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1(y≠0)D.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1(y≠0)

查看答案和解析>>

同步練習(xí)冊答案