A. | f(x)=x,g(x)=$\sqrt{{x}^{2}}$ | B. | f(x)=x,g(x)=$\root{3}{{x}^{3}}$ | ||
C. | f(x)=cosx,g(x)=sin($\frac{3π}{2}$+x) | D. | f(x)=lnx2,g(x)=2lnx |
分析 根據(jù)兩個(gè)函數(shù)的定義域相同,對(duì)應(yīng)法則也相同,即可判斷它們是同一函數(shù),對(duì)應(yīng)的圖象也相同.
解答 解:對(duì)于A,f(x)=x(x∈R),與g(x)=$\sqrt{{x}^{2}}$=|x|(x∈R)的對(duì)應(yīng)法則不同,不是相同函數(shù),函數(shù)圖象不同;
對(duì)于B,f(x)=x(x∈R),與g(x)=$\root{3}{{x}^{3}}$=x(x∈R)的定義域相同,對(duì)應(yīng)法則也相同,是相同函數(shù),函數(shù)圖象也相同;
對(duì)于C,f(x)=cosx(x∈R),與g(x)=sin($\frac{3π}{2}$+x)=-cosx(x∈R)的對(duì)應(yīng)法則不同,不是相同函數(shù),函數(shù)圖象不同;
對(duì)于D,f(x)=lnx2=2ln|x|的定義域?yàn)閧x|x≠0},g(x)=2lnx的定義域?yàn)閧x|x>0},兩個(gè)函數(shù)的定義域不同,不是相同函數(shù),函數(shù)圖象也不同.
故選:B.
點(diǎn)評(píng) 本題考查了判斷兩個(gè)函數(shù)是否為同一函數(shù)的應(yīng)用問(wèn)題,判斷的標(biāo)準(zhǔn)是看兩個(gè)函數(shù)的定義域和對(duì)應(yīng)法則是否相同,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 27 | B. | 18 | C. | 9 | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=sin(-\frac{5}{6}x+\frac{3π}{5})$ | B. | $y=sin(\frac{6}{5}x-\frac{2π}{5})$ | C. | $y=sin(\frac{6}{5}x+\frac{3π}{5})$ | D. | $y=-cos(\frac{5}{6}x+\frac{3π}{5})$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com