已知全集U=R,集合A={x|x2-2x≤0},集合B={y|y=ex,x∈R},那么(∁UA)∩B=( 。
A、{x|x>2}
B、{x|x<0}
C、{x|0<x≤1}
D、{x|1<x≤2}
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:由一元二次不等式的解法求出A,由補(bǔ)集的運(yùn)算求出∁UA,由指數(shù)函數(shù)的性質(zhì)和交集的運(yùn)算求出(∁UA)∩B.
解答: 解:由x2-2x≤0得0≤x≤2,則集合A={x|0≤x≤2},
所以∁UA={x|x<0或x>2},
由y=ex>0得,集合B={y|y>0},
所以(∁UA)∩B={x|x>2},
故選:A.
點(diǎn)評(píng):本題考查集合的混合運(yùn)算,一元二次不等式的解法,以及指數(shù)函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如圖的算法流程圖寫出輸出結(jié)果S是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的敘述:
①若p∨q為真命題,則p∧q為真命題;
②“x>5”是“x2-4x-5>0”的充分不必要條件;
③命題p:?x∈R,使得x2+x-1<0,則?p:?x∈R,使得x2+x-1≥0;
④命題“若am2≤bm2,則a≤b”的否命題為真.
其中錯(cuò)誤的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=exlnx
(1)求y=f(x)-f′(x)的單調(diào)區(qū)間與極值;
(2)若k<0,試分析方程f′(x)=f(x)+kx-k2+e在[1,+∞)上是否有實(shí)根,若有實(shí)數(shù)根,求出k的取值范圍,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(1-x)的值域?yàn)椋?∞,1],則函數(shù)f(x)的定義域?yàn)椋ā 。?/div>
A、[-9,+∞)
B、[0,+∞)
C、(-9,1)
D、[-9,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=f(x)為一次函數(shù),f(0)=5,且函數(shù)圖象過點(diǎn)(-2,1),則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且b2+c2=a2+bc
(1)求sinA的值;
(2)若a=2,求b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某尋呼臺(tái)共有客戶3000人,若尋呼臺(tái)準(zhǔn)備了100份小禮品,邀請客戶在指定時(shí)間來領(lǐng)。僭O(shè)任一客戶去領(lǐng)獎(jiǎng)的概率為4%.問:尋呼臺(tái)能否向每一位顧客都發(fā)出獎(jiǎng)品邀請?若能使每一位領(lǐng)獎(jiǎng)人都得到禮品,尋呼臺(tái)至少應(yīng)準(zhǔn)備多少禮品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場在銷售過程中投入的銷售成本x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如表:
銷售成本x(萬元)3467
銷售額y(萬元)25344956
根據(jù)上表可得,該數(shù)據(jù)符合線性回歸方程:y=bx-9.由此預(yù)測銷售額為100萬元時(shí),投入的銷售成本大約為
 

查看答案和解析>>

同步練習(xí)冊答案