A. | lna>-b-1 | B. | lna≥-b-1 | C. | lna<-b-1 | D. | lna≤-b-1 |
分析 由f(x)≥f(2),知x=2是函數(shù)f(x)的極值點(diǎn),所以f′(2)=0,從而得到b=1-4a,作差:lna-(-b-1)=lna+2-4a,所以構(gòu)造函數(shù)g(x)=lnx+2-4x,通過導(dǎo)數(shù)可求得g(x)≤g($\frac{1}{4}$)<0,即g(x)<0,所以g(a)<0,所以lna<-b-1.
解答 解:f′(x)=2ax+b-$\frac{2}{x}$,
由題意可知,f(x)在x=2處取得最小值,即x=2是f(x)的極值點(diǎn);
∴f′(2)=0,∴4a+b=1,即b=1-4a;
令g(x)=2-4x+lnx(x>0),則g′(x)=$\frac{1-4x}{x}$;
∴當(dāng)0<x<$\frac{1}{4}$時(shí),g′(x)>0,g(x)在(0,$\frac{1}{4}$)上單調(diào)遞增;
當(dāng)x>$\frac{1}{4}$時(shí),g′(x)<0,g(x)在($\frac{1}{4}$,+∞)上單調(diào)遞減;
∴g(x)≤g($\frac{1}{4}$)=1+ln$\frac{1}{4}$=1-ln4<0;
∴g(a)<0,即2-4a+lna=lna+b+1<0;
故lna<-b-1,
故選:C.
點(diǎn)評(píng) 考查最值的概念,極值的定義,函數(shù)導(dǎo)數(shù)符號(hào)和函數(shù)單調(diào)性的關(guān)系,通過構(gòu)造函數(shù)比較兩個(gè)式子大小的方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 0 | C. | 2 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
(1)不超過4千米的里程收費(fèi)12元; (2)超過4千米的里程按每千米2元收費(fèi)(對(duì)于其中不足千米的部分,若其小于0.5千米則不收費(fèi),若其大于或等于0.5千米則按1千米收費(fèi)); 當(dāng)車程超過4千米時(shí),另收燃油附加費(fèi)1元. |
A. | y=2[x+$\frac{1}{2}$]+4 | B. | y=2[x+$\frac{1}{2}$]+5 | C. | y=2[x-$\frac{1}{2}$]+4 | D. | y=2[x+$\frac{1}{2}$]+5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{17}{2}$ | B. | $\frac{19}{2}$ | C. | 10 | D. | 12 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com