【題目】在平面直角坐標(biāo)系中,已知橢圓)的焦距為,且過(guò)點(diǎn)

(1)求橢圓的方程;

(2)斜率大于0且過(guò)橢圓右焦點(diǎn)的直線與橢圓交于兩點(diǎn),若,求直線的方程.

【答案】(1) .(2)

【解析】

1)由題意可得c,2aPF1+PF2,由a,bc的關(guān)系可得b1,進(jìn)而得到橢圓方程;

2)設(shè)直線l的方程為:xmy,(m0),代入橢圓方程得得關(guān)于m的二次方程,

由韋達(dá)定理及3m即可.

1)由題意得:c,焦點(diǎn)F10),F20),

2aPF1+PF24,

a2b,

故橢圓C的方程為

2)設(shè)直線l的方程為:xmy,(m0),代入橢圓方程得(m2+4y2+210

設(shè) Mx1,y1)、N x2y2),

16m2+1)>0恒成立,由韋達(dá)定理可得y1+y2,

3y1=﹣3y2,

由①②可得m

故直線l的方程為:y

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,,底面是菱形,且,,過(guò)點(diǎn)作直線為直線上一動(dòng)點(diǎn).

(1)求證:;

(2)當(dāng)面時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),函數(shù),函數(shù).

(1)當(dāng)時(shí),求函數(shù)的零點(diǎn)個(gè)數(shù);

(2)若函數(shù)與函數(shù)的圖象分別位于直線的兩側(cè),求的取值集合

(3)對(duì)于,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.

(1)若直線的斜率為,判斷直線與曲線的位置關(guān)系;

(2)求交點(diǎn)的極坐標(biāo)(,).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=4x2kx-8.

(1)若函數(shù)yf(x)在區(qū)間[2,10]上單調(diào),求實(shí)數(shù)k的取值范圍;

(2)若yf(x)在區(qū)間(-∞,2]上有最小值-12,求實(shí)數(shù)k的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段: , ,…, ,得到如圖所示的頻率分布直方圖.

(1)求圖中實(shí)數(shù)的值;

(2)若該校高一年級(jí)共有640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);

(3)若從數(shù)學(xué)成績(jī)?cè)?/span>兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)存在極小值點(diǎn),且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn)是曲線上一點(diǎn),若點(diǎn)到曲線的最小距離為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

某工廠去年的某產(chǎn)品的年銷售量為100萬(wàn)只,每只產(chǎn)品的銷售價(jià)為10元,每只產(chǎn)品固定成本為8元.今年,工廠第一次投入100萬(wàn)元(科技成本),并計(jì)劃以后每年比上一年多投入100萬(wàn)元(科技成本),預(yù)計(jì)銷售量從今年開始每年比上一年增加10萬(wàn)只,第n次投入后,每只產(chǎn)品的固定成本為k0,k為常數(shù),n≥0),若產(chǎn)品銷售價(jià)保持不變,第n次投入后的年利潤(rùn)為萬(wàn)元.

)求k的值,并求出的表達(dá)式;

)若今年是第1年,問(wèn)第幾年年利潤(rùn)最高?最高利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

同步練習(xí)冊(cè)答案