分析 (Ⅰ)由橢圓的定義知,|AF1|+|AF2|=|BF1|+|BF2|=2a,即可得出△F1AB的周長是常數(shù).
(Ⅱ)由周長為16,得a=4; 又|AF1|、|F1F2|、|AF2|成等差數(shù)列,可得2|F1F2|=|AF1|+|AF2|,即4c=2a,解得c.再利用b2=a2-c2,即可得出.
解答 解:(Ⅰ)由橢圓的定義知,|AF1|+|AF2|=|BF1|+|BF2|=2a,∴△F1AB的周長是常數(shù)4a.
(Ⅱ)由周長為16,得a=4; 又|AF1|、|F1F2|、|AF2|成等差數(shù)列,
∴2|F1F2|=|AF1|+|AF2|,
∴4c=2a,解得c=2.
b2=a2-c2=12.
∴橢圓的標準方程為:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}$=1.
點評 本題考查了橢圓的定義標準方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ①② | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | -4 | C. | -2 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | -3 | -2 | -1 | 1 | 2 | 3 |
f(x) | 5 | 1 | -1 | -3 | 3 | 5 |
g(x) | 1 | 4 | 2 | 3 | -2 | -4 |
A. | 3 | B. | 4 | C. | -3 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{50}$ | B. | $\frac{1}{20}$ | C. | $\frac{20}{1003}$ | D. | $\frac{50}{1003}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com