2.一次考試中,五名學(xué)生的數(shù)學(xué)、物理成績?nèi)绫硭荆?br />
學(xué)生ABCDE
數(shù)學(xué)成績x(分)8991939597
物理成績y(分)8789899293
(1)根據(jù)上表數(shù)據(jù)在圖中作散點(diǎn)圖,求y與x的線性回歸方程;
(2)要從5名學(xué)生中選2人參加一項(xiàng)活動,求選中的學(xué)生中至少有一人的物理成績高于90分的概率.
參考公式:
回歸直線的方程:$\widehaty$=<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>b^$\widehatb$x+$\widehata$,其中$\widehatb$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y$-$\widehatb$$\overline x$,
附:已計(jì)算出:$\overline x$=93,$\overline y$=90,$\sum_{i=1}^5{{{({x_i}-\overline x)}^2}}$=40,$\sum_{i=1}^5$(xi-$\overline x$)(yi-$\overline y$)=30.

分析 (1)根據(jù)所給的數(shù)據(jù)先做出數(shù)據(jù)的平均數(shù),即樣本中心點(diǎn),根據(jù)最小二乘法做出線性回歸方程的系數(shù),寫出線性回歸方程;
(2)用列舉法可得從5名學(xué)生中任取2名學(xué)生的所有情況和其中至少有一人物理成績高于90分的情況包含的事件數(shù)目,由古典概型公式,計(jì)算可得答案.

解答 解:(1)∵$\overline x$=93,$\overline y$=90,$\sum_{i=1}^5{{{({x_i}-\overline x)}^2}}$=40,$\sum_{i=1}^5$(xi-$\overline x$)(yi-$\overline y$)=30,
∴$\widehatb$=0.75,$\widehata$=20.25,
故y關(guān)于x的線性回歸方程是:$\widehaty$=0.75x+20.25.
(2)從5名學(xué)生中任取2名學(xué)生的所有情況為:(A4,A5)、(A4,A1)、(A4,A2)、(A4,A3)、(A5,A1)、(A5,A2)、(A5,A3)、(A1,A2)、(A1,A3)、(A2,A3)共種情10況.…(3分)
其中至少有一人物理成績高于90分的情況有:(A4,A5)、(A4,A1)、(A4,A2)、(A4,A3)、(A5,A1)、(A5,A2)、(A5,A3)共7種情況,
故上述抽取的5人中選2人,選中的學(xué)生的物理成績至少有一人的成績高于90分的概率P=0.7.

點(diǎn)評 本題主要考查了古典概型和線性回歸方程等知識,考查了學(xué)生的數(shù)據(jù)處理能力和應(yīng)用意識.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某電視臺推出某種游戲節(jié)目,規(guī)則如下:選手面對1-8號8扇大門,依次按響門上的門鈴,門鈴會播放一段流行歌曲,選手需正確回答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.在一次場外調(diào)査中,得到如下2x2列聯(lián)表
正誤
年齡
正確錯(cuò)誤合計(jì)
[20,30)103040
[30,40]107080
合計(jì)20100120

P(K2<k00.100.050.0100.005
k02.7063.8416.6357.879
(Ⅰ)判斷是否有90%的把握認(rèn)為猜對歌曲名稱與年齡有關(guān),說明你的理由;
(Ⅱ)若在這次場外調(diào)査中按年齡段用分層抽樣的方法選取6名選手,并從中抽取兩名幸運(yùn)選手,求兩名幸運(yùn)選手不在同一年齡段的概率.(視頻率為概率)
(參考公式:其中K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知曲線C1的極坐標(biāo)方程為:ρ=6sinθ-8cosθ,曲線C2的參數(shù)方程為:$\left\{\begin{array}{l}{x=8cosφ}\\{y=3sinφ}\end{array}\right.$(φ為參數(shù)).
(1)化C1,C2為直角坐標(biāo)方程,并說明它們分別表示什么曲線;
(2)已知曲線C1上的點(diǎn)P(ρ,$\frac{π}{2}$),Q為曲線C2上一動點(diǎn),求PQ的中點(diǎn)M到直線l:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$(t為參數(shù))的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知偶函數(shù)f(x)在[0,2]單調(diào)遞減,若a=f(0.54),b=f(${{{log}_{\frac{1}{2}}}4}$),c=f(20.6),則a、b、c的大小關(guān)系是( 。
A.a>b>cB.c>a>bC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)>0且g(3)=0,不等式f(x)g(x)<0的解集是( 。
A.(-∞,-3)∪(0,3)B.(-3,0)∪(3,+∞)C.(-∞,-3)∪(-3,0)D.(0,3)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,內(nèi)角A,B,C所對邊為a,b,c,且acosC+ccosA=2bcosA,則sinB+sinC的取值范圍是(  )
A.($\frac{{\sqrt{3}}}{2}$,$\sqrt{3}}$]B.($\frac{\sqrt{3}}{2}$,$\sqrt{3}$)C.($\frac{\sqrt{3}}{3}$,$\sqrt{3}$]D.($\frac{\sqrt{3}}{3}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知3a=5b=c,且$\frac{1}{a}$+$\frac{1}$=2,則${∫}_{0}^{C}({x}^{2}-1)dx$=(  )
A.$±2\sqrt{2}$B.$2\sqrt{2}$C.$±\sqrt{15}$D.$4\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.△ABC中,已知C(2,5),邊BC上的中線AD所在的直線方程是11x-14y+3=0,BC邊上高線AH所在的直線方程是y=2x-1,試求直線AB、BC、CA的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某旅游景點(diǎn)有一處山峰,游客需從景點(diǎn)入口A處向下沿坡角為α的一條小路行進(jìn)a百米后到達(dá)山腳B處,然后沿坡角為β的山路向上行進(jìn)b百米后到達(dá)山腰C處,這時(shí)回頭望向景點(diǎn)入口A處俯角為θ,由于山勢變陡到達(dá)山峰D坡角為γ,然后繼續(xù)向上行進(jìn)c百米終于到達(dá)山峰D處,游覽風(fēng)景后,此游客打算乘坐由山峰D直達(dá)入口A的纜車下山結(jié)束行程,如圖,假設(shè)A、B、C、D四個(gè)點(diǎn)在同一豎直平面
(1)求B,D兩點(diǎn)的海拔落差h;
(2)求AD的長.

查看答案和解析>>

同步練習(xí)冊答案