12.某旅游景點(diǎn)有一處山峰,游客需從景點(diǎn)入口A處向下沿坡角為α的一條小路行進(jìn)a百米后到達(dá)山腳B處,然后沿坡角為β的山路向上行進(jìn)b百米后到達(dá)山腰C處,這時(shí)回頭望向景點(diǎn)入口A處俯角為θ,由于山勢(shì)變陡到達(dá)山峰D坡角為γ,然后繼續(xù)向上行進(jìn)c百米終于到達(dá)山峰D處,游覽風(fēng)景后,此游客打算乘坐由山峰D直達(dá)入口A的纜車下山結(jié)束行程,如圖,假設(shè)A、B、C、D四個(gè)點(diǎn)在同一豎直平面
(1)求B,D兩點(diǎn)的海拔落差h;
(2)求AD的長(zhǎng).

分析 (1)分別過(guò)點(diǎn)C,D作CE⊥BE,DF⊥CF,垂足分別為E,F(xiàn),解三角形可得,
(2)根據(jù)余弦定理即可求出.

解答 解:(1)分別過(guò)點(diǎn)C,D作CE⊥BE,DF⊥CF,垂足分別為E,F(xiàn),
在Rt△CBF和Rt△DCF中,CF=bsinβ,DF=csin γ
∴h=CF+DF=bsin β+csin γ.
(2):聯(lián)結(jié)AC.在△ABC中,由余弦定理得AC2=a2+b2+2abcos(α+β),
在△ACD中,由余弦定理得AD2=AC2+c2-2cACcos(π-γ+θ),
所以AD=α$\sqrt{{a}^{2}+^{2}+2abcos(α+β)+{c}^{2}+2c\sqrt{{a}^{2}+^{2}+2abcos(α+β)}cos(γ-θ)}$.

點(diǎn)評(píng) 本題考查了解三角形實(shí)際生活中的應(yīng)用,關(guān)鍵是構(gòu)造三角形,利用余弦定理,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.一次考試中,五名學(xué)生的數(shù)學(xué)、物理成績(jī)?nèi)绫硭荆?br />
學(xué)生ABCDE
數(shù)學(xué)成績(jī)x(分)8991939597
物理成績(jī)y(分)8789899293
(1)根據(jù)上表數(shù)據(jù)在圖中作散點(diǎn)圖,求y與x的線性回歸方程;
(2)要從5名學(xué)生中選2人參加一項(xiàng)活動(dòng),求選中的學(xué)生中至少有一人的物理成績(jī)高于90分的概率.
參考公式:
回歸直線的方程:$\widehaty$=<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>b^$\widehatb$x+$\widehata$,其中$\widehatb$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y$-$\widehatb$$\overline x$,
附:已計(jì)算出:$\overline x$=93,$\overline y$=90,$\sum_{i=1}^5{{{({x_i}-\overline x)}^2}}$=40,$\sum_{i=1}^5$(xi-$\overline x$)(yi-$\overline y$)=30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)f(x)是定義在(-∞,+∞)上,以2為周期的周期函數(shù),且f(x)為偶函數(shù),在區(qū)間[2,3]上,f(x)=-2(x-3)2+4,則x∈[0,2]時(shí),f(x)=-2(x-1)2+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)2cosx-2x+π+4=0,y+siny•cosy-1=0,則sin(x-2y)的值為( 。
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若復(fù)數(shù)z滿足2z+$\overline{z}$=3-2i,其中i為虛數(shù)單位,則z=1-2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若二次函數(shù)g(x)滿足g(1)=1,g(-1)=5,且圖象過(guò)原點(diǎn),則g(x)的解析式為g(x)=3x2 -2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)向量$\overrightarrow{a}$=(1,-4),$\overrightarrow$=(-1,x),$\overrightarrow{c}$=($\overrightarrow{a}$+3$\overrightarrow$),若$\overrightarrow{a}$∥$\overrightarrow{c}$,則實(shí)數(shù)x的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知圓C在極坐標(biāo)方程為ρ=4cosθ-2sinθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=5+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)).若直線l與圓C相交于不同的兩點(diǎn)P,Q.
(Ⅰ)寫出圓C的直角坐標(biāo)方程,并求圓心的坐標(biāo)與半徑;
(Ⅱ)若弦長(zhǎng)|PQ|=4,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=ax3+bx-7,g(x)=f(x)+2,且f(2)=3,則g(-2)=-15.

查看答案和解析>>

同步練習(xí)冊(cè)答案