14.已知3a=5b=c,且$\frac{1}{a}$+$\frac{1}$=2,則${∫}_{0}^{C}({x}^{2}-1)dx$=( 。
A.$±2\sqrt{2}$B.$2\sqrt{2}$C.$±\sqrt{15}$D.$4\sqrt{15}$

分析 根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),求出c,根據(jù)積分公式進(jìn)行計(jì)算即可得到結(jié)論.

解答 解:因?yàn)?a=5b=c,所以$a={log_3}c,b={log_5}c,則\frac{1}{a}={log_c}3,\frac{1}={log_c}5$,
因?yàn)?\frac{1}{a}+\frac{1}=2$,
所以logc15=2,即c2=15,
所以$c=\sqrt{15}$,$\int_0^C{({{x^2}-1})}dx=4\sqrt{15}$,
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)積分的計(jì)算和對(duì)數(shù)的運(yùn)算性質(zhì),要求熟練掌握常見函數(shù)的積分公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若點(diǎn)P(cosα,sinα)在直線y=-2x上,則cos(α+$\frac{3π}{2}$)的值等于±$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知曲線y=$\frac{1}{3}$x3+x.
(1)求曲線在點(diǎn)P(1,$\frac{4}{3}$)處的切線方程;      
(2)求該曲線的切線傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.一次考試中,五名學(xué)生的數(shù)學(xué)、物理成績?nèi)绫硭荆?br />
學(xué)生ABCDE
數(shù)學(xué)成績x(分)8991939597
物理成績y(分)8789899293
(1)根據(jù)上表數(shù)據(jù)在圖中作散點(diǎn)圖,求y與x的線性回歸方程;
(2)要從5名學(xué)生中選2人參加一項(xiàng)活動(dòng),求選中的學(xué)生中至少有一人的物理成績高于90分的概率.
參考公式:
回歸直線的方程:$\widehaty$=<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>b^$\widehatb$x+$\widehata$,其中$\widehatb$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y$-$\widehatb$$\overline x$,
附:已計(jì)算出:$\overline x$=93,$\overline y$=90,$\sum_{i=1}^5{{{({x_i}-\overline x)}^2}}$=40,$\sum_{i=1}^5$(xi-$\overline x$)(yi-$\overline y$)=30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\frac{x}{e^x}$,則方程[f(x)]2-(e-1)f(x)-e=0的實(shí)根個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知x1,x2(x1<x2)是方程4x2-4kx-1=0(k∈R)的兩個(gè)不等實(shí)根,函數(shù)f(x)=$\frac{2x-k}{{{x^2}+1}}$的定義域?yàn)閇x1,x2],當(dāng)x2=1時(shí),f(x)≤2恒成立,則k的取值范圍是( 。
A.(-∞,-1)B.[-2,+∞)C.(1,2)D.$({\frac{1}{2},\frac{2}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓5x2+9y2=45,橢圓的右焦點(diǎn)為F,
(1)求過點(diǎn)F且斜率為1的直線l0被橢圓截得的弦AB的長.
(2)求以點(diǎn)M(1,1)為中點(diǎn)的橢圓的弦CD所在的直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)f(x)是定義在(-∞,+∞)上,以2為周期的周期函數(shù),且f(x)為偶函數(shù),在區(qū)間[2,3]上,f(x)=-2(x-3)2+4,則x∈[0,2]時(shí),f(x)=-2(x-1)2+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)向量$\overrightarrow{a}$=(1,-4),$\overrightarrow$=(-1,x),$\overrightarrow{c}$=($\overrightarrow{a}$+3$\overrightarrow$),若$\overrightarrow{a}$∥$\overrightarrow{c}$,則實(shí)數(shù)x的值為4.

查看答案和解析>>

同步練習(xí)冊答案