11.若函數(shù)f(x)=$\frac{1}{3}$x3+bx2+x+2有極值點,則b的取值范圍是(-∞,-1)∪(1,+∞).

分析 先求函數(shù)的導數(shù),利用函數(shù)f(x)有極值點,則f′(x)=0有解,由判別式大于0,可得b的取值范圍.

解答 解:f(x)=$\frac{1}{3}$x3+bx2+x+2,
f′(x)=x2+2bx+1,
函數(shù)有極值點,
∴x2+2bx+1=0,△>0,
即4b2-4>0,解得:b>1或b<-1,
故答案為:(-∞,-1)∪(1,+∞).

點評 本題考查導數(shù)研究函數(shù)的極值,考查極值存在的條件,一元二次方程根的問題,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=ax2+ln(x+1)
(1)當a=-$\frac{1}{4}$時,求函數(shù)f(x)的單調區(qū)間
(2)當x∈[0,+∞)時,函數(shù)y=f(x)圖象上的點都在$\left\{\begin{array}{l}{x≥0}\\{y-x≤0}\end{array}\right.$所表示的平面區(qū)域內,求實數(shù)a的取值范圍
(3)求證:(1+$\frac{2}{2×3}$)(1+$\frac{4}{3×5}$)(1+$\frac{8}{5×9}$)…[1+$\frac{{2}^{n}}{({2}^{n-1}+1)({2}^{n}+1)}$]<e(其中n∈N+,e是自然數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,ABC-A1B1C1是底面邊長為2,高為$\frac{{\sqrt{3}}}{2}$的正三棱柱,經過AB的截面與上底面相交于PQ,設C1P=λC1A1(0<λ<1).
(Ⅰ)證明:PQ∥A1B1;
(Ⅱ)當$λ=\frac{1}{2}$時,求點C到平面APQB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.一同學在電腦中打出如下若干個圈:○●○○●○○○●○○○○●○○○○○●…若將此若干個圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前233個圈中的●的個數(shù)是( 。
A.18B.19C.20D.21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知直線C1:$\left\{\begin{array}{l}{x=tcosα+1}\\{y=tsinα+2}\end{array}\right.$(t為參數(shù)),圓C2:$\left\{\begin{array}{l}{x=tcosα+1}\\{y=tsinα+2}\end{array}\right.$(α為參數(shù))
(Ⅰ)若直線C1經過點(2,3),求直線C1的普通方程;若圓C2經過點(2,2),求圓C2的普通方程;
(Ⅱ)點P是圓C2上一個動點,若|OP|的最大值為4,求t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.不等式|x-1|+|x-2|<2的解集是$\left\{{\left.x\right|\frac{1}{2}<x<\frac{5}{2}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在直角坐標系xOy中直線l過點P($\frac{{\sqrt{10}}}{2}$,0)且傾斜角為α,在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中曲線C的方程為ρ2(1+sin2θ)=1,已知直線l與曲線C交于不同兩點M,N.
(1)求曲線C的直角坐標方程;
(2)求$\frac{{|{PM}|•|{PN}|}}{{|{MN}|}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知正三棱錐的側棱長為2,底面邊長為3,則該正三棱錐的外接球的表面積為( 。
A.$\frac{4}{3}π$B.C.$\frac{32}{3}π$D.16π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知f(x)=$\left\{{\begin{array}{l}{{{log}_{\frac{1}{16}}}(x+1),x<0}\\{-{x^2}+x,x≥0}\end{array}}$,則關于x的方程f(x)=m(m∈R)恰有三個不同的實數(shù)根a,b,c,則a+b+c的取值范圍是( 。
A.($\frac{1}{4}$,$\frac{1}{2}$)B.($\frac{1}{4}$,1)C.($\frac{1}{2}$,1)D.($\frac{1}{2}$,$\frac{3}{4}$)

查看答案和解析>>

同步練習冊答案