分析 (1)將a的值代入,求出函數(shù)f(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,從而求出函數(shù)f(x)的單調(diào)區(qū)間;
(2)將問(wèn)題轉(zhuǎn)化為ax2+ln(x+1)≤x恒成立,設(shè)g(x)=ax2+ln(x+1)-x,(x≥0),只需g(x)max≤0即可,通過(guò)討論a的范圍,得到函數(shù)g(x)的單調(diào)性,
從而求出a是范圍
(3)當(dāng)a=0時(shí),ln(x+1)≤x在[0,+∞)上恒成立.$\frac{{2}^{n}}{({2}^{n-1}+1)({2}^{n}+1)}$=2($\frac{1}{{2}^{n-1}+1}$-$\frac{1}{{2}^{n}+1}$),取自然對(duì)數(shù),裂項(xiàng)求和,即可證明.
解答 解:(1)當(dāng)a=-$\frac{1}{4}$時(shí),f(x)=-$\frac{1}{4}$x2+ln(x+1),(x>-1),
f′(x)=-$\frac{(x+2)(x-1)}{2(x+1)}$,(x>-1),
由f′(x)>0解得-1<x<1,由f′(x)<0解得:x>1,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間是(-1,1),單調(diào)遞減區(qū)間是(1,+∞);
(2)當(dāng)x∈[0,+∞)時(shí),函數(shù)y=f(x)的圖象上的點(diǎn)都在$\left\{\begin{array}{l}{x≥0}\\{y-x≤0}\end{array}\right.$所表示的平面區(qū)域內(nèi),即當(dāng)x∈[0,+∞)時(shí),不等式f(x)≤x恒成立,
即ax2+ln(x+1)≤x恒成立,設(shè)g(x)=ax2+ln(x+1)-x,(x≥0),
只需g(x)max≤0即可,
由g′(x)=$\frac{x[2ax+(2a-1)]}{x+1}$,
(i)當(dāng)a=0時(shí),g′(x)=-$\frac{x}{x+1}$,
當(dāng)x>0時(shí),g′(x)<0,函數(shù)g(x)在(0,+∞)單調(diào)遞減,
∴g(x)≤g(0)=0成立,
(ii)當(dāng)a>0時(shí),由g′(x)=$\frac{x[2ax+(2a-1)]}{x+1}$=0,
因x∈[0,+∞),∴x=$\frac{1}{2a}$-1,
①若$\frac{1}{2a}$-1<0,即a>$\frac{1}{2}$時(shí),在區(qū)間(0,+∞)上,g′(x)>0,
函數(shù)g(x)在(0,+∞)上單調(diào)遞增,函數(shù)g(x)在[0,+∞)上無(wú)最大值,此時(shí)不滿(mǎn)足;
②若$\frac{1}{2a}$-1≥0,即0<a≤$\frac{1}{2}$時(shí),函數(shù)g(x)在(0,$\frac{1}{2a}$-1)上單調(diào)遞減,
在區(qū)間($\frac{1}{2a}$-1,+∞)上單調(diào)遞增,同樣函數(shù)g(x)在[0,+∞)上無(wú)最大值,此時(shí)也不滿(mǎn)足;
(iii)當(dāng)a<0時(shí),由g′(x)=$\frac{x[2ax+(2a-1)]}{x+1}$,
∵x∈[0,+∞),
∴2ax+(2a-1)<0,∴g′(x)<0,故函數(shù)g(x)在[0,+∞)單調(diào)遞減,
∴g(x)≤g(0)=0恒成立,
綜上:實(shí)數(shù)a的取值范圍是(-∞,0].
(3)證明:當(dāng)a=0時(shí),ln(x+1)≤x在[0,+∞)上恒成立.
$\frac{{2}^{n}}{({2}^{n-1}+1)({2}^{n}+1)}$=2($\frac{1}{{2}^{n-1}+1}$-$\frac{1}{{2}^{n}+1}$),
∵ln{(1+$\frac{2}{2×3}$)(1+$\frac{4}{3×5}$)(1+$\frac{8}{5×9}$)…[1+$\frac{{2}^{n}}{({2}^{n-1}+1)({2}^{n}+1)}$]}
=ln(1+$\frac{2}{2×3}$)+ln(1+$\frac{4}{3×5}$)+ln(1+$\frac{8}{5×9}$)+…+ln[1+$\frac{{2}^{n}}{({2}^{n-1}+1)({2}^{n}+1)}$]
<$\frac{2}{2×3}$+$\frac{4}{3×5}$+$\frac{8}{5×9}$+…+$\frac{{2}^{n}}{({2}^{n-1}+1)({2}^{n}+1)}$
=2[($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{{2}^{n-1}+1}$-$\frac{1}{{2}^{n}+1}$)]=2($\frac{1}{2}$-$\frac{1}{{2}^{n}+1}$)<1,
∴(1+$\frac{2}{2×3}$)(1+$\frac{4}{3×5}$)(1+$\frac{8}{5×9}$)…[1+$\frac{{2}^{n}}{({2}^{n-1}+1)({2}^{n}+1)}$]<e.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的應(yīng)用,考查了函數(shù)恒成立問(wèn)題,考查不等式的證明,考查分類(lèi)討論思想,本題有一定的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com