12.直線l過(guò)拋物線C:y2=2px(p>0)的焦點(diǎn)F,與拋物線C交于A、B兩點(diǎn),與其準(zhǔn)線交于點(diǎn)D,若|AF|=6,$\overrightarrow{DB}=2\overrightarrow{BF}$,則p=3.

分析 過(guò)A,B,F(xiàn)向準(zhǔn)線作垂線,利用拋物線的定義得出直線AB的斜率,計(jì)算|AD|可得F為AD的中點(diǎn),利用中位線定理得出p的值.

解答 解:過(guò)A,B,F(xiàn)作準(zhǔn)線的垂線,垂足分別為A′,B′,F(xiàn)′,
則|AA′|=|AF|=6,|BB′|=|BF|,|FF′|=p.
∵$\overrightarrow{DB}=2\overrightarrow{BF}$,∴|DB|=2|BF|=2|BB′|,
∴直線l的斜率為$\sqrt{3}$,
∴|AD|=2|AA′|=12,∴F是AD的中點(diǎn).
∴|FF′|=$\frac{1}{2}$|AA′|=3,即p=3.
故答案為:3.

點(diǎn)評(píng) 本題考查了拋物線的定義與性質(zhì),直線與拋物線的位置關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=ln|x|+|sinx|(-π≤x≤π且x≠0)的圖象大致是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如果函數(shù)y=logax(a>0且a≠1)在[1,3]上的最大值與最小值的差為2,則滿足條件的a值的集合是(  )
A.$\{\sqrt{3}\}$B.$\{\frac{{\sqrt{3}}}{3}\}$C.$\{\frac{{\sqrt{3}}}{3},\sqrt{3}\}$D.$\{\sqrt{3},3\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖古銅錢外圓內(nèi)方,外圓直徑為4cm,中間是邊長(zhǎng)為1cm的正方形孔,隨機(jī)地在古銅錢所在圓內(nèi)任取一點(diǎn),則該點(diǎn)剛好位于孔中的概率是$\frac{1}{4π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,兩坐標(biāo)系單位長(zhǎng)度相同.已知曲線的極坐標(biāo)方程為ρ=2cosθ+2sinθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2-t}\\{y=-1+t}\end{array}\right.$(t為參數(shù)).
(Ⅰ)將直線l的參數(shù)方程化為普通方程,將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C上到直線l的距離為d的點(diǎn)的個(gè)數(shù)為f(d),求f(d)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知命題p:函數(shù)y=lg(1-x)在(-∞,1)上單調(diào)遞減,命題q:函數(shù)y=2cosx是偶函數(shù),則下列命題中為真命題的是( 。
A.p∧qB.(¬p)∨(¬q)C.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$(a>0,b>0)的右焦點(diǎn)為F,過(guò)點(diǎn)F作x軸的垂線與雙曲線交于B,C兩點(diǎn)(點(diǎn)B在x軸上方),過(guò)點(diǎn)B作斜率為負(fù)數(shù)的漸近線的垂線,過(guò)點(diǎn)C作斜率為正數(shù)的漸近線的垂線,兩垂線交于點(diǎn)D,若D到直線BC的距離等于虛軸長(zhǎng),則雙曲線的離心率e等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤a}\\{y≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=2x+y的最大值為4,則實(shí)數(shù)a=( 。
A.2B.3C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.甲、乙兩人約定晚6點(diǎn)到晚7點(diǎn)之間在某處見(jiàn)面,并約定甲若早到應(yīng)等乙半小時(shí),而乙還有其他安排,若乙早到則不需等待,則甲、乙兩人能見(jiàn)面的概率( 。
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案