某種汽車購買時(shí)費(fèi)用為14.4萬元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共0.9萬元,汽車的維修費(fèi)為:第一年0.2萬元,第二年0.4萬元,第三年0.6萬元,……,依等差數(shù)列逐年遞增.
(Ⅰ)設(shè)使用n年該車的總費(fèi)用(包括購車費(fèi)用)為f(n),試寫出f(n)的表達(dá)式;
(Ⅱ)求這種汽車使用多少年報(bào)廢最合算(即該車使用多少年平均費(fèi)用最少)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和Sn滿足.
(1)求Sn的表達(dá)式;
(2)設(shè)bn=,求{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}滿足:a1=1,a2=(a≠0),an+2=p·(其中P為非零常數(shù),n∈N *)
(1)判斷數(shù)列{}是不是等比數(shù)列?
(2)求an;
(3)當(dāng)a=1時(shí),令bn=,Sn為數(shù)列{bn}的前n項(xiàng)和,求Sn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)在數(shù)列中,,(),數(shù)列的前項(xiàng)和為。(1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)求;(3)證明:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)在平面直角坐標(biāo)系中,已知,滿足向量與向量共線,且點(diǎn)都在斜率為6的同一條直線上。若。求(1)數(shù)列的通項(xiàng) (2)數(shù)列{}的前n項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=2n2,{bn}為等比數(shù)列,且a1=b1,b2(a2-a1)=b1.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知等比數(shù)列的公比為q,記,·,則以下結(jié)論一定正確的是( )
A.?dāng)?shù)列為等差數(shù)列,公差為 |
B.?dāng)?shù)列為等比數(shù)列,公比為 |
C.?dāng)?shù)列為等比數(shù)列,公比為 |
D.?dāng)?shù)列為等比數(shù)列,公比為 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知數(shù)列{an},{bn}滿足a1=b1=3,an+1-an==3,n∈N*,若數(shù)列{cn}滿足cn=ban,則c2 013=( )
A.92 012 | B.272 012 | C.92 013 | D.272 013 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com