已知數(shù)列中,,設(shè).
(Ⅰ)試寫出數(shù)列的前三項(xiàng);
(Ⅱ)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅲ)設(shè)的前項(xiàng)和為,
求證:.
(Ⅰ),,;(Ⅱ)證明見試題解析,;(Ⅲ)證明見試題解析.
解析試題分析:(Ⅰ)由遞推公式求出,再利用可直接求出;(Ⅱ)要證數(shù)列是等比數(shù)列,可由數(shù)列的遞推關(guān)系建立起與的關(guān)系.
,從而證得數(shù)列是等比數(shù)列. 然后選求出,由可求出;(Ⅲ)本題最好是能求出,但由數(shù)列的通項(xiàng)公式可知不可求,結(jié)合結(jié)論是不等式形式可以用放縮法使得和可求,如
,又
,即有(等號(hào)只在時(shí)取得),然后求和,即可證得結(jié)論.
試題解析:(Ⅰ)由,得,.
由,可得,,. 3分
(Ⅱ)證明:因,故
. 5分
顯然,因此數(shù)列是以為首項(xiàng),以2為公比的等比數(shù)列,即
. 7分
解得. 8分
(Ⅲ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9f/e/yfc022.png" style="vertical-align:middle;" />
,
所以 11分
又(當(dāng)且僅當(dāng)時(shí)取等號(hào)),
故 14分[來源
考點(diǎn):(Ⅰ)數(shù)列的項(xiàng);(Ⅱ)等比數(shù)列的定義;(Ⅲ)放縮法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的首項(xiàng),公差,且第項(xiàng)、第項(xiàng)、第項(xiàng)分別是等比數(shù)列的第項(xiàng)、第項(xiàng)、第項(xiàng).
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì),均有成立,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的首項(xiàng),公差,且分別是正數(shù)等比數(shù)列的項(xiàng).
(1)求數(shù)列與的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì)任意均有成立,設(shè)的前項(xiàng)和為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列,公差,前n項(xiàng)和為,,且滿足成等比數(shù)列.
(I)求的通項(xiàng)公式;
(II)設(shè),求數(shù)列的前項(xiàng)和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是曲線C:上的一點(diǎn)(其中),過點(diǎn)作與曲線C在處的切線垂直的直線交軸于點(diǎn),過作與軸垂直的直線與曲線C在第一象限交于點(diǎn);再過點(diǎn)作與曲線C在處的切線垂直的直線交軸于點(diǎn),過作與軸垂直的直線與曲線C在第一象限交于點(diǎn);如此繼續(xù)下去,得一系列的點(diǎn)、、、、。(其中)
(1)求數(shù)列的通項(xiàng)公式。
(2)若,且是數(shù)列的前項(xiàng)和,是數(shù)列的前項(xiàng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)設(shè)函數(shù)的圖像的頂點(diǎn)的縱坐標(biāo)構(gòu)成數(shù)列,求證:為等差數(shù)列;
(Ⅱ)設(shè)函數(shù)的圖像的頂點(diǎn)到軸的距離構(gòu)成數(shù)列,求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的各項(xiàng)均是正數(shù),其前項(xiàng)和為,滿足.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某企業(yè)為擴(kuò)大生產(chǎn)規(guī)模,今年年初新購(gòu)置了一條高性能的生產(chǎn)線,該生產(chǎn)線在使用過程中的設(shè)備維修、燃料和動(dòng)力等消耗的費(fèi)用(稱為設(shè)備的低劣化值)會(huì)逐年增加,第一年設(shè)備低劣化值是4萬元,從第二年到第七年,每年設(shè)備低劣化值均比上年增加2萬元,從第八年開始,每年設(shè)備低劣化值比上年增加25%.
(1)設(shè)第年該生產(chǎn)線設(shè)備低劣化值為,求的表達(dá)式;
(2)若該生產(chǎn)線前年設(shè)備低劣化平均值為,當(dāng)達(dá)到或超過12萬元時(shí),則當(dāng)年需要更新生產(chǎn)線,試判斷第幾年需要更新該生產(chǎn)線,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列滿足,且.
(1) 求數(shù)列的通項(xiàng)公式;
(2) 令,當(dāng)數(shù)列為遞增數(shù)列時(shí),求正實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com