已知數列中,,設.
(Ⅰ)試寫出數列的前三項;
(Ⅱ)求證:數列是等比數列,并求數列的通項公式;
(Ⅲ)設的前項和為,
求證:.
(Ⅰ),,;(Ⅱ)證明見試題解析,;(Ⅲ)證明見試題解析.
解析試題分析:(Ⅰ)由遞推公式求出,再利用可直接求出;(Ⅱ)要證數列是等比數列,可由數列的遞推關系建立起與的關系.
,從而證得數列是等比數列. 然后選求出,由可求出;(Ⅲ)本題最好是能求出,但由數列的通項公式可知不可求,結合結論是不等式形式可以用放縮法使得和可求,如
,又
,即有(等號只在時取得),然后求和,即可證得結論.
試題解析:(Ⅰ)由,得,.
由,可得,,. 3分
(Ⅱ)證明:因,故
. 5分
顯然,因此數列是以為首項,以2為公比的等比數列,即
. 7分
解得. 8分
(Ⅲ)因為
,
所以 11分
又(當且僅當時取等號),
故 14分[來源
考點:(Ⅰ)數列的項;(Ⅱ)等比數列的定義;(Ⅲ)放縮法.
科目:高中數學 來源: 題型:解答題
已知是曲線C:上的一點(其中),過點作與曲線C在處的切線垂直的直線交軸于點,過作與軸垂直的直線與曲線C在第一象限交于點;再過點作與曲線C在處的切線垂直的直線交軸于點,過作與軸垂直的直線與曲線C在第一象限交于點;如此繼續(xù)下去,得一系列的點、、、、。(其中)
(1)求數列的通項公式。
(2)若,且是數列的前項和,是數列的前項
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某企業(yè)為擴大生產規(guī)模,今年年初新購置了一條高性能的生產線,該生產線在使用過程中的設備維修、燃料和動力等消耗的費用(稱為設備的低劣化值)會逐年增加,第一年設備低劣化值是4萬元,從第二年到第七年,每年設備低劣化值均比上年增加2萬元,從第八年開始,每年設備低劣化值比上年增加25%.
(1)設第年該生產線設備低劣化值為,求的表達式;
(2)若該生產線前年設備低劣化平均值為,當達到或超過12萬元時,則當年需要更新生產線,試判斷第幾年需要更新該生產線,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com