某企業(yè)為擴(kuò)大生產(chǎn)規(guī)模,今年年初新購置了一條高性能的生產(chǎn)線,該生產(chǎn)線在使用過程中的設(shè)備維修、燃料和動力等消耗的費(fèi)用(稱為設(shè)備的低劣化值)會逐年增加,第一年設(shè)備低劣化值是4萬元,從第二年到第七年,每年設(shè)備低劣化值均比上年增加2萬元,從第八年開始,每年設(shè)備低劣化值比上年增加25%.
(1)設(shè)第年該生產(chǎn)線設(shè)備低劣化值為,求的表達(dá)式;
(2)若該生產(chǎn)線前年設(shè)備低劣化平均值為,當(dāng)達(dá)到或超過12萬元時,則當(dāng)年需要更新生產(chǎn)線,試判斷第幾年需要更新該生產(chǎn)線,并說明理由.

(1);(2)第九年.

解析試題分析:(1)可知時,構(gòu)成等差數(shù)列;構(gòu)成等比數(shù)列.然后由條件即可得出的表達(dá)式,注意寫出分段函數(shù)的形式;(2)先寫出的表達(dá)式,然后判定其單調(diào)性,得出是增函數(shù),從而求出的取值范圍.所以得到第九年需要更新該生產(chǎn)線.
試題解析:(1)當(dāng)時,數(shù)列是首項(xiàng)為4,公差為2的等差數(shù)列,
                             3分
當(dāng)時,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,又,
 
的表達(dá)式為                         6分
(2)設(shè)表示數(shù)列的前項(xiàng)和,由等差及等比數(shù)列的求和公式得
當(dāng)時,
當(dāng)時,由
該生產(chǎn)線前n年設(shè)備低劣化平均值為 9分
當(dāng)時,數(shù)列為單調(diào)遞增數(shù)列;
當(dāng)時,,
所以為單調(diào)遞增數(shù)列.                                              11分
則第九年需要更新該生產(chǎn)線.   13分
考點(diǎn):1.等差及等比數(shù)列的通項(xiàng)公式;2.等差及等比數(shù)列的求和公式;3.數(shù)列的單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知Sn是數(shù)列{an}的前n項(xiàng)和,且anSn-1+2(n≥2),a1=2.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)bn,Tnbn+1bn+2+…+b2n,是否存在最大的正整數(shù)k,使得
對于任意的正整數(shù)n,有Tn恒成立?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,,設(shè)
(Ⅰ)試寫出數(shù)列的前三項(xiàng);
(Ⅱ)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式
(Ⅲ)設(shè)的前項(xiàng)和為,
求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列{an}的前n項(xiàng)和Sn=2n-a,n∈N*.設(shè)公差不為零的等差數(shù)列{bn}滿足:b1=a1+2,且b2+5,b4+5,b8+5成等比數(shù)列.
(Ⅰ)求a的值及數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{logan}的前n項(xiàng)和為Tn.求使Tn>bn的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,常數(shù),且對一切正整數(shù)都成立。
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),,當(dāng)為何值時,數(shù)列的前項(xiàng)和最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,
(1)求的值;
(2)證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(3)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列 的所有項(xiàng)均為正數(shù),首項(xiàng)成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列的前項(xiàng)和為求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前n項(xiàng)和為,數(shù)列滿足
(1)求的通項(xiàng)公式;
(2)求證:數(shù)列為等比數(shù)列;
(3)求前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義:如果數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個三角形的三邊長,則稱為“三角形”數(shù)列.對于“三角形”數(shù)列,如果函數(shù)使得仍為一個“三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”,.
(Ⅰ)已知是首項(xiàng)為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;
(Ⅱ)已知數(shù)列的首項(xiàng)為2010,是數(shù)列的前n項(xiàng)和,且滿足,證明是“三角形”數(shù)列;
(Ⅲ)根據(jù)“保三角形函數(shù)”的定義,對函數(shù),,和數(shù)列1,,()提出一個正確的命題,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案