數(shù)列滿足,且.
(1) 求數(shù)列的通項公式;
(2) 令,當(dāng)數(shù)列為遞增數(shù)列時,求正實數(shù)的取值范圍.
(1);(2)
解析試題分析:本小題主要通過遞推數(shù)列通項公式的求取,考查對考生的運算求解能力、邏輯推理能力,對考生化歸與轉(zhuǎn)化的數(shù)學(xué)思想提出較高要求. 本題屬于基礎(chǔ)試題,難度相對較低(1)采用構(gòu)造數(shù)列的思路進(jìn)行分析,借助將遞推式兩邊同時除以達(dá)到目的;(2)化簡整理的通項公式,借助數(shù)列的單調(diào)性研究正實數(shù)的取值范圍.
試題解析:(1) 由,可知,
由數(shù)列的遞推可知:
……
因此,則. (6分)
(2) 由可得,
若數(shù)列為遞增數(shù)列,則,
當(dāng)時,取最小值為,則,即.
(12分)
考點:(1)數(shù)列的通項公式;(2)數(shù)列的單調(diào)性.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,設(shè).
(Ⅰ)試寫出數(shù)列的前三項;
(Ⅱ)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;
(Ⅲ)設(shè)的前項和為,
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列 的所有項均為正數(shù),首項且成等差數(shù)列.
(1)求數(shù)列的通項公式;
(2)數(shù)列的前項和為若求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前n項和為且,數(shù)列滿足且.
(1)求的通項公式;
(2)求證:數(shù)列為等比數(shù)列;
(3)求前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,點在曲線上, (Ⅰ)(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè)數(shù)列的前n項和為,若對于任意的,使得恒成立,求最小正整數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列滿足:
(I)證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式;
(II)若,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前項和為,且,.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列滿足 ,求的通項公式;
(3)求數(shù)列前 項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義:如果數(shù)列的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱為“三角形”數(shù)列.對于“三角形”數(shù)列,如果函數(shù)使得仍為一個“三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”,.
(Ⅰ)已知是首項為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;
(Ⅱ)已知數(shù)列的首項為2010,是數(shù)列的前n項和,且滿足,證明是“三角形”數(shù)列;
(Ⅲ)根據(jù)“保三角形函數(shù)”的定義,對函數(shù),,和數(shù)列1,,,()提出一個正確的命題,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com