A. | (0,2] | B. | [2,4) | C. | [2,+∞) | D. | (2,+∞) |
分析 先根據(jù)已知條件結(jié)合兩角和與差的計(jì)算公式整理得到B+C=$\frac{2π}{3}$,A=$\frac{π}{3}$,再集合余弦定理以及二次函數(shù)的最值和三角形三邊關(guān)系即可得到結(jié)論.
解答 解:由已知:($\sqrt{3}$sinB-cosB)($\sqrt{3}$sinC-cosC)=4cosB•cosC,
可得:$\sqrt{3}$(sinBcosC+cosBsinC)=-3(cosBcosC-sinBsinC),
⇒$\sqrt{3}$sin(B+C)=-3cos(B+C)
⇒tan(B+C)=-$\sqrt{3}$;
因?yàn)椋?<B+C<π;
所以:B+C=$\frac{2π}{3}$,A=$\frac{π}{3}$,
由:AB+AC=4,得:AB=4-AC,
故:BC2=AB2+AC2-2AC•ABcosA
=(4-AC)2+AC2-(4-AC)AC
=3(AC-2)2+4≥4;
當(dāng)且僅當(dāng)AC=2時(shí)上式取等號(hào),
所以:BC≥2,
又因?yàn)椋築C<AC+AB=4,
則BC的取值范圍是:[2,4).
故選:B.
點(diǎn)評(píng) 本題主要考查了三角函數(shù)的化簡(jiǎn)求值,余弦定理的運(yùn)用.考查了學(xué)生對(duì)三角函數(shù)基礎(chǔ)知識(shí)的整體把握和理解,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $4\sqrt{2}$ | C. | 8 | D. | $4\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 10 | D. | 20 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com