【題目】在 中, 分別是角 的對邊,且 ,若 , ,則 的面積為( )
A.
B.
C.
D.

【答案】C
【解析】由正弦定理得:

a=2RsinA,b=2RsinB,c=2RsinC

將上式代入已知 ,

即2sinAcosB+sinCcosB+cosCsinB=0,即2sinAcosB+sin(B+C)=0,

A+B+C=π,∴sin(B+C)=sinA,

∴2sinAcosB+sinA=0,即sinA(2cosB+1)=0,
∵sinA≠0,∴cosB=

B為三角形的內(nèi)角,∴B= ;

,B= 代入余弦定理b2=a2+c22accosB得:

b2=(a+c)22ac2accosB,即13=162ac(1 ),

ac=3,∴SABC= acsinB= .

所以答案是:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)寫出直線l的普通方程與曲線C的直角坐標系方程;
(2)設直線l與曲線C相交于A,B兩點,求∠AOB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在正四棱柱 中, , 分別為底面 、底面 的中心, , , 的中點, 上,且 .

(1)以 為原點,分別以 , 所在直線為 x 軸、 y 軸、 z 軸建立空間直角坐標系,求圖中各點的坐標.
(2)以 D 為原點,分別以 , DC,DD1所在直線為 軸、 軸、 軸建立空間直角坐標系,求圖中各點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)若曲線 在點 處的切線經(jīng)過點 ,求 的值;
(2)若 內(nèi)存在極值,求 的取值范圍;
(3)當 時, 恒成立,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知向量,設,向量

(1)若,求向量的夾角;

(2)若 對任意實數(shù)都成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的程序框圖運行程序后,輸出的結(jié)果是31,則判斷框中的整數(shù)H=(

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知扇形的圓心角是α,半徑為R,弧長為l.

(1)若α=75°,R=12 cm,求扇形的弧長l和面積;

(2)若扇形的周長為20 cm,當扇形的圓心角α為多少弧度時,這個扇形的面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點為原點,焦點為F(1,0),過焦點的直線與拋物線交于A,B兩點,過AB的中點M作準線的垂線與拋物線交于點P,若|AB|=6,則點P的坐標為

查看答案和解析>>

同步練習冊答案