7.已知$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{CD}$=$\overrightarrow{c}$,$\overrightarrow{DE}$=$\overrightarrowvnrjdnh$,$\overrightarrow{AE}$=$\overrightarrow{e}$,則$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$+$\overrightarrow7zddhjd$-$\overrightarrow{e}$=$\overrightarrow{0}$.

分析 利用向量的三角形法則與多邊形法則即可得出.

解答 解:$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$+$\overrightarrowpz9jbdn$-$\overrightarrow{e}$=$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$+$\overrightarrow{DE}$-$\overrightarrow{AE}$=$\overrightarrow{AE}$-$\overrightarrow{AE}$=$\overrightarrow{0}$,
故答案為:$\overrightarrow{0}$.

點(diǎn)評 本題考查了向量的三角形法則與多邊形法則,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且S6>S7>S5,有下列五個(gè)說法:
①S6為Sn的最大值,②S11>0,③S12<0,④S13<0,⑤S8-S5>0,
其中說法正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示的程序框圖中,若f(x)=sinx,g(x)=cosx,x∈[0,$\frac{π}{2}$],且h(x)≥m恒成立,則m的最大值是(  )
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在北京召開的國際數(shù)學(xué)家大會(huì)會(huì)標(biāo)如圖所示,它是由4個(gè)相同的直角三角形與中間的小正方形拼成的一大正方形,若直角三角形中較小的銳角為θ,大正方形的面積是1,小正方形的面積是$\frac{1}{25}$,則cos2θ-sinθ2+2=(  )
A.$\frac{57}{25}$B.$\frac{24}{25}$C.-$\frac{57}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知角的終邊經(jīng)過點(diǎn)(4,-3),則tanα=(  )
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列說法錯(cuò)誤的是( 。
A.在△ABC中,a>b是sinA>sinB的充要條件
B.命題:“在銳角△ABC中,sinA>cosB”為真命題
C.若p:?x≥0,x2-x+1>0,則¬p:?x<0,x2-x+1≤0
D.已知命題p:?φ∈R,使f(x)=sin(x+φ)為偶函數(shù);命題q:?x∈R,cos2x+4sinx-3<0,則“p∧(¬q)”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在平面直角坐標(biāo)系xOy中,已知直線l:x+y+a=0,與點(diǎn)A(0,2),若直線l上存在點(diǎn)M滿足|$\overrightarrow{MA}$|2+|$\overrightarrow{MO}$|2=7(O為原點(diǎn)),則實(shí)數(shù)a的取值范圍是( 。
A.(-$\sqrt{5}$-1,$\sqrt{5}$-1)B.[-$\sqrt{5}$-1,$\sqrt{5}$-1]C.(-2$\sqrt{2}$-1,2$\sqrt{2}$-1)D.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{{1-{a^2}}}$=1(a>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,若存在k,使直線y=k(x-1)與雙曲線的右支交于P,Q兩點(diǎn),且△PF1Q的周長為8,則雙曲線的斜率為正的漸近線的傾斜角的取值范圍是(  )
A.($\frac{π}{3}$,$\frac{π}{2}$)B.($\frac{π}{6}$,$\frac{π}{2}$)C.(0,$\frac{π}{6}$)D.(0,$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.用反證法證明:在三角形ABC中,若AB=AC,則∠B一定是銳角.

查看答案和解析>>

同步練習(xí)冊答案