3.曲線y=2x-lnx在點(1,2)處的切線的傾斜角是$\frac{π}{4}$.

分析 求出曲線的導(dǎo)函數(shù),把x=1代入即可得到切線的斜率,然后根據(jù)(1,2)和斜率寫出切線的傾斜角即可.

解答 解:設(shè)該切線的傾斜角是α.
由函數(shù)y=2x-lnx知y′=2-$\frac{1}{x}$,把x=1代入y′得到切線的斜率k=2-$\frac{1}{1}$=1.
∴tanα=1.
∵0≤α≤π,
∴α=$\frac{π}{4}$.
故答案是:$\frac{π}{4}$.

點評 考查利用導(dǎo)數(shù)來求曲線某點的切線方程,它既可以考查學(xué)生求導(dǎo)能力,也考察了學(xué)生對導(dǎo)數(shù)意義的理解,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知定義在R上的函數(shù)f(x),當(dāng)x<0時,f(x)=x3-1;當(dāng)-1≤x≤1時,f(-x)=-f(x);當(dāng)x>$\frac{1}{4}$時,f(x+$\frac{3}{4}$)=f(x-$\frac{1}{4}$),則f(6)=( 。
A.2B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知M(4,2)是直線l被橢圓x2+4y2=36所截得的弦AB的中點,則直線l的方程為( 。
A.x+2y-8=0B.2x-y-6=0C.2x+y-10=0D.x-2y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.化簡sin2αtanα+$\frac{co{s}^{2}α}{tanα}$+2sinαcosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)5個產(chǎn)品中有3個合格品,求任取3個產(chǎn)品中合格品數(shù)的方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)A,B為兩個不相等的集合,條件p:x∈(A∪B),條件q:x∈(A∩B),則p是q的( 。
A.充分不必要條件B.充要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如果樣本點有3個,坐標(biāo)分別是(1,2),(2,2.5),(3,4.5),則用最小二乘法求出其線性回歸方程$\widehat{y}$=$\widehat{a}$+$\widehat$x中$\widehat{a}$與$\widehat$的關(guān)系是( 。
A.$\widehat{a}$+$\widehat$=3B.$\widehat{a}$+3$\widehat$=2C.2$\widehat{a}$+$\widehat$=3D.$\widehat{a}$+2$\widehat$=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=atan3x+bsin3x+1(a,b為非零常數(shù)),且f(5)=7,則f(-5)=( 。
A.5B.-5C.7D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在等差數(shù)列{an}中,a5+a8=5,則a2+a11等于( 。
A.5B.10C.15D.20

查看答案和解析>>

同步練習(xí)冊答案