15.如果樣本點(diǎn)有3個,坐標(biāo)分別是(1,2),(2,2.5),(3,4.5),則用最小二乘法求出其線性回歸方程$\widehat{y}$=$\widehat{a}$+$\widehat$x中$\widehat{a}$與$\widehat$的關(guān)系是( 。
A.$\widehat{a}$+$\widehat$=3B.$\widehat{a}$+3$\widehat$=2C.2$\widehat{a}$+$\widehat$=3D.$\widehat{a}$+2$\widehat$=3

分析 求出樣本中心點(diǎn)代入回歸方程$\widehat{y}$=$\widehat{a}$+$\widehat$x中,可得結(jié)論.

解答 解:由題意,$\overline{x}$=2,$\overline{y}$=3,
代入回歸方程$\widehat{y}$=$\widehat{a}$+$\widehat$x中,可得$\widehat{a}$+2$\widehat$=3,
故選D.

點(diǎn)評 本題考查回歸方程,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+2cos2x+a-1(a為常數(shù)),若函數(shù)f(x)的最大值為$\sqrt{2}$+1.
(1)求實數(shù)a的值;
(2)求函數(shù)f(x)所有對稱中心的坐標(biāo);
(3)求函數(shù)g(x)=f(x+$\frac{3}{8}$π)+2減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖(1),等腰直角三角形ABC的底邊AB=4,點(diǎn)D在線段AC上(不含C點(diǎn)),DE⊥AB于E,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖(2)).
(1)求證:PB⊥DE;
(2)若PE⊥BE,AE=1,
①試在線段BP上找一點(diǎn)M,使得CM∥平面PDE,求BM的長;
②求二面角D-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.曲線y=2x-lnx在點(diǎn)(1,2)處的切線的傾斜角是$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知F1、F2分別是橢圓C:$\frac{{x}^{2}}{4}$+y2=1的左、右焦點(diǎn).
(1)若P是第一象限內(nèi)該橢圓上的一點(diǎn),$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=-$\frac{5}{4}$,求點(diǎn)P的坐標(biāo);
(2)若直線l與圓O:x2+y2=$\frac{1}{4}$相切,交橢圓C于A,B兩點(diǎn),是否存在這樣的直線l,使得OA⊥OB?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知tanα=$\frac{1}{3}$,求$\frac{sinα+3cosα}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在等差數(shù)列{an}中,已知a3+a8>0,且S9<0,則S1、S2、…S9中最小的是(  )
A.S4B.S5C.S6D.S7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{1}{2}$,長軸A1A2,短軸B1B2,四邊形A1B1A2B2的面積為$4\sqrt{3}$.
(I)求橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)過橢圓的右焦點(diǎn)F的直線l交橢圓于P、Q,直線A1P與A2Q交于M,A1Q與A2P交于N.
(i)證明:MN⊥x軸,并求直線MN的方程.
(ii)證明:以MN為直徑的圓過右焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{a{x^2}+2,x≥0}\\{(a-2)•{2^x},x<0}\end{array}}$是R上的單調(diào)函數(shù),則實數(shù)a的取值范圍是( 。
A.(2,+∞)B.(2,4]C.(-∞,4]D.(2,4)

查看答案和解析>>

同步練習(xí)冊答案