已知f(x)和g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)-g(x)=1+x+x2+x3,則f(2)+2g(1)=
 
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:本題可以先將“x”用“-x”代入,然后根據(jù)函數(shù)奇偶性進行化簡,從而求出函數(shù)f(x)和g(x)的解析式,現(xiàn)再分別求出f(2)和g(1)的值,可得到本題結(jié)論.
解答: 解:∵函數(shù)f(x)和g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),
∴f(-x)=f(x),g(-x)=-g(x),
∵f(x)-g(x)=1+x+x2+x3,①
∴f(-x)-g(-x)=1-x+(-x)2+(-x)3,
∴f(x)+g(x)=1-x+x2-x3,②
由①、②得:
f(x)=1+x2,
g(x)=-x-x3,
∴f(2)=1+4=5,
g(1)=-1-1=-2,
∴f(2)+2g(1)=5-4=1.
故答案為:1.
點評:本題考查了函數(shù)的奇偶性的應用,本題難度不大,有一定的計算量,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

正視圖,側(cè)視圖,俯視圖都是這樣,則該幾何體表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設圓C與圓x2+(y-3)2=1外切,與直線y=0相切,則C的圓心軌跡為( 。
A、雙曲線B、拋物線C、橢圓D、圓

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xoy中,以原點O為極點,以x軸正半軸為極軸,與直角坐標系xoy取相同的長度單位,建立極坐標系.已知點p的極坐標為(4,
π
2
),直線l的極坐標方程為ρcos(θ-
π
4
)=a且點P在直線l上.
(1)求a的值及直線l的直角坐標方程;
(2)設曲線C的參數(shù)方程為
x=
3
cosθ
y=sinθ
(θ為參數(shù)),求曲線C上的點到直l的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在矩形ABCD中,若AB=3,AD=4,E是CD的中點,F(xiàn)在BC上,若
AF
AD
=10,則
EF
BC
等于( 。
A、-5
B、-6
C、-7
D、
11
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-2sin(2x-
3
).
(1)求出它的初相和對稱中心;
(2)用“五點法”畫出f(x)在一個周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題p:?x>0,x+
1
x
>a;命題q:x2-2ax+1≤0解集非空.¬q假,p∧q假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,
AB
=(2,1),
AC
=(3,k),若三角形ABC是直角三角形,則k的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:(2λ+1)x+(λ+2)y+2λ+2=0(λ∈R),有下列四個結(jié)論:
①直線l經(jīng)過定點(0,-2);
②若直線l在x軸和y軸上的截距相等,則λ=1;
③當λ∈[1,4+3
3
]時,直線l的傾斜角θ∈[120°,135°];
④當λ∈(0,+∞)時,直線l與兩坐標軸圍成的三角形面積的最小值為
8
9

其中正確結(jié)論的是
 
(填上你認為正確的所有序號).

查看答案和解析>>

同步練習冊答案