1.已知正項數(shù)列{an}的前n項和為Sn,對?n∈N*有2Sn=an2+an.令bn=$\frac{\sqrt{{{a}_{n}}_{+1}}-\sqrt{{a}_{n}}}{\sqrt{{a}_{n+1}}•\sqrt{{a}_{n}}}$,設(shè){bn}的前n項和為Tn,則T15=$\frac{3}{4}$.

分析 利用2an+1=2Sn+1-2Sn整理得an+1-an=1,進(jìn)而計算可得數(shù)列{an}的通項公式,確定bn=$\frac{\sqrt{{{a}_{n}}_{+1}}-\sqrt{{a}_{n}}}{\sqrt{{a}_{n+1}}•\sqrt{{a}_{n}}}$=$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$,即可求出T15

解答 解:∵2Sn=an2+an,
∴2Sn+1=an+12+an+1,
∴2an+1=2Sn+1-2Sn
=(an+12+an+1)-(an2+an
=an+12+an+1-an2-an
整理得:(an+1+an)(an+1-an)=an+1+an,
∵an>0,
∴an+1-an=1,數(shù)列是公差為1的等差數(shù)列,
又∵2a1=2S1=a12+a1,
∴a1=1,
∴an=n.
∴bn=$\frac{\sqrt{{{a}_{n}}_{+1}}-\sqrt{{a}_{n}}}{\sqrt{{a}_{n+1}}•\sqrt{{a}_{n}}}$=$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$,
∴T15=1-$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{2}}$-$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{15}}$-$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$.
故答案為:$\frac{3}{4}$.

點評 本題考查數(shù)列的通項及前n項和,考查運算求解能力,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.拋物線y2=2px(p>o)的準(zhǔn)線被圓x2+y2+2x-3=0所截得的線段長為4,則p=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知拋物線y2=2px(p>0)上一點M(1,m)(m>0)到其焦點的距離為5,雙曲線G:$\frac{x^2}{a^2}-{y^2}$=1(a>0)的左頂點為A,若雙曲線G的一條漸近線與直線AM平行,則實數(shù)a的值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={2,3,4,6},B={2,4,5,7},則A∩B的子集的個數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.命題p:?x<0,x2<2x,則命題¬p為( 。
A.?x0<0,x02<2${\;}^{{x}_{0}}$B.?x0≥0,x02≥2${\;}^{{x}_{0}}$
C.?x0<0,x02≥2${\;}^{{x}_{0}}$D.?x0≥0,x02<2${\;}^{{x}_{0}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為120°,|x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$|=$\sqrt{3}$(x,y∈R),則|x$\overrightarrow{{e}_{1}}$-y$\overrightarrow{{e}_{2}}$|的取值范圍是[1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知四棱錐P-ABCD中,底面ABCD是矩形,PD=AB=2AD=2,PC=2$\sqrt{2}$,M,N分別是CD,PB的中點,
(1)求證:MN∥平面PAD;
(2)若E為AD的中點,求三棱錐D-EMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.2015年7月,“國務(wù)院關(guān)于積極推進(jìn)‘互聯(lián)網(wǎng)+’行動的指導(dǎo)意見”正式公布,在“互聯(lián)網(wǎng)+”的大潮下,我市某高中“微課堂”引入教學(xué),某高三教學(xué)教師錄制了“導(dǎo)數(shù)的應(yīng)用”與“概率的應(yīng)用”兩個單元的微課視頻放在所教兩個班級(A班和B班)的網(wǎng)頁上,A班(實驗班,基礎(chǔ)較好)共有學(xué)生60人,B班(普通班,基礎(chǔ)較差)共有學(xué)生60人,該教師規(guī)定兩個班的每一名同學(xué)必須在某一天觀看其中一個單元的微課視頻,第二天經(jīng)過統(tǒng)計,A班有40人觀看了“導(dǎo)數(shù)的應(yīng)用”視頻,其他20人觀看了“概率的應(yīng)用”視頻,B班有25人觀看了“導(dǎo)數(shù)的應(yīng)用”視頻,其他35人觀看了“概率的應(yīng)用”視頻.
(1)完成下列2×2列聯(lián)表:
 觀看“導(dǎo)數(shù)的應(yīng)用”
視頻人數(shù)
觀看“概率的應(yīng)用”
視頻人數(shù)
總計
A班   
B班   
總計   
判斷是否有99%的把握認(rèn)為學(xué)生選擇兩個視頻中的哪一個與班級有關(guān)?
(2)在A班中用分層抽樣的方法抽取6人進(jìn)行學(xué)習(xí)效果調(diào)查;
①求抽取的6人中觀看“導(dǎo)數(shù)的應(yīng)用”視頻的人數(shù)及觀看“概率的應(yīng)用”視頻的人數(shù);
②在抽取的6人中再隨機(jī)抽取3人,設(shè)3人中觀看“導(dǎo)數(shù)的應(yīng)用”視頻的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
參考公式:K2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
參考數(shù)據(jù):
P(x2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,圓O的直徑為AB且BE為圓O的切線,點C為圓O上不同于A、B的一點,AD為∠BAC的平分線,且分別與BC交于H,與圓O交于D,與BE交于E,連結(jié)BD、CD.
(Ⅰ)求證:∠DBE=∠DBC;
 (Ⅱ)若HE=4,求ED.

查看答案和解析>>

同步練習(xí)冊答案