13.如圖所示,某公園內(nèi)從點(diǎn)A處出發(fā)有兩條道路AB,AC連接到南北方向的道路BC.從點(diǎn)A處觀察點(diǎn)B和點(diǎn)C的方位角分別是∠PAB和∠PAC,且cos∠PAB=$\frac{7}{25}$,cos∠PAC=$\frac{3}{5}$,AB=2.5km.
(1)求AC和BC;
(2)現(xiàn)有甲乙二人同時(shí)從點(diǎn)A處出發(fā),甲以5km/h的速度沿道路AC步行,乙以6km/h的速度沿A-B-C路線步行,問半小時(shí)后兩人的距離是多少?

分析 (1)由誘導(dǎo)公式和正弦定理即可求出;
(2)先判斷所在的位置,再根據(jù)余弦定理即可求出.

解答 (1)因?yàn)?cos∠PAB=\frac{7}{25}$,$cos∠PAC=\frac{3}{5}$,AB=2.5km,
所以在△ABC中,$cosB=-\frac{7}{25}$,$cosC=\frac{3}{5}$,
所以$sinB=\frac{24}{25}$,$sinC=\frac{4}{5}$,
$sinA=sin(B+C)=sinBcosC+cosBsinC=\frac{44}{125}$,
在△ABC中,由正弦定理$\frac{AB}{sinC}=\frac{BC}{sinA}=\frac{AC}{sinB}$
得:$BC=\frac{ABsinA}{sinC}=1.1(km)$,$AC=\frac{ABsinB}{sinC}=3(km)$
(2)半小時(shí)后,假設(shè)甲位于點(diǎn)D,則AB=2.5km,
假設(shè)乙位于點(diǎn)E,因?yàn)橐业穆烦虨?km,大于2.5km,
故點(diǎn)應(yīng)位于道路BC上,且CE=0.6km,
在△CDE中,由余弦定理得:DE2=DC2+CE2-2DC•CEcosC=0.52+0.62-2×0.5×0.6×0.6=0.52,
所以DE=0.5km.

點(diǎn)評(píng) 本題考查了正弦定理和余弦定理,培養(yǎng)了學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2sinωπx,且函數(shù)f(x)的圖象與y=-2的圖象的相鄰兩交點(diǎn)的橫坐標(biāo)之差為2
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)f(x)的圖象的橫坐標(biāo)擴(kuò)大π倍得到函數(shù)g(x)的圖象,若函數(shù)y=g(x+$\frac{π}{3}$)-m在[-$\frac{2π}{3}$,$\frac{5π}{6}$]上的最小值為2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若規(guī)定:
①{m}表示大于m的最小整數(shù),例如{3}=4,{-2.4}=-2
②[m]表示不大于m的最大整數(shù),例如:[5]=5,[-3.6]=-4,則使等式2{x}-[x]=4成立的整數(shù)x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.直角坐標(biāo)系xOy的原點(diǎn)和極坐標(biāo)系Ox的極點(diǎn)重合,x軸正半軸與極軸重合,單位長(zhǎng)度相同,在直角坐標(biāo)系下,已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosφ}\\{y=2sinφ}\end{array}\right.$,(φ為參數(shù)).
(1)在極坐標(biāo)系下,曲線C與射線θ=$\frac{π}{4}$和射線θ=-$\frac{π}{4}$分別交于A,B兩點(diǎn),求△AOB的面積;
(2)在直角坐標(biāo)系下,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=6\sqrt{2}-2t}\\{y=t-2}\end{array}\right.$(t為參數(shù)),求曲線C與直線l的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=lnx+$\frac{1}{2}$x2+ax存在與直線3x-y=0平行的切線,則實(shí)數(shù)a的取值范圍是( 。
A.(0,+∞)B.(-∞,2)C.(2,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|-3<x<1},B={x|x2-2x≤0},則A∩B=(  )
A.{x|0<x<1}B.{x|0≤x<1}C.{x|-1<x≤1}D.{x|-2<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y-2≤0\\ x-3y≥0\\ y≥0\end{array}\right.$,則z=x-2y的最大值為( 。
A.-2B.0C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)$\overrightarrow a$=(1-cosα,$\sqrt{3}}$),$\overrightarrow b$=(sinα,3)且$\overrightarrow a$∥$\overrightarrow b$,則銳角α為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知集合A={x|x∈R|ax2-2x-1=0},B={x|y=$\sqrt{x}$},A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案