9.用適合的方法證明下列命題:$\sqrt{a+1}$-$\sqrt{a}$<$\sqrt{a-1}$-$\sqrt{a-2}$(a≥2)

分析 利用分析法即可證明.

解答 解:要證:$\sqrt{a+1}$-$\sqrt{a}$<$\sqrt{a-1}$-$\sqrt{a-2}$(a≥2),
只要證$\sqrt{a+1}$+$\sqrt{a-2}$<$\sqrt{a}$+$\sqrt{a-1}$,
只要證($\sqrt{a+1}$+$\sqrt{a-2}$)2<($\sqrt{a}$+$\sqrt{a-1}$)2,
即2a-1+2$\sqrt{{a}^{2}-a-2}$<2a-1+2$\sqrt{{a}^{2}-a}$
只要證$\sqrt{{a}^{2}-a-2}$<$\sqrt{{a}^{2}-a}$,
只要證a2-a-2<a2-a,
只要證-2<0,
顯然-2<0成立,
故$\sqrt{a+1}$-$\sqrt{a}$<$\sqrt{a-1}$-$\sqrt{a-2}$(a≥2)

點(diǎn)評(píng) 本題考查了利用分析法證明不等式成立,關(guān)鍵是轉(zhuǎn)化,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知邊長(zhǎng)為2的等邊三角形ABC,過(guò)C作BC的垂線l,則將△ABC繞l旋轉(zhuǎn)一周形成的曲面所圍成的幾何體的體積是( 。
A.$2\sqrt{3}π$B.$4\sqrt{3}π$C.$2\sqrt{5}π$D.$4\sqrt{5}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.集合A={a,b,c},當(dāng)且僅當(dāng)A中有兩個(gè)元素之和等于第三個(gè)元素時(shí)稱集合A為“有緣集合”,若a,b,c∈{1,2,3,4,5},則集合A為“有緣集合”的概率是( 。
A.$\frac{2}{5}$B.$\frac{3}{10}$C.$\frac{1}{2}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列命題中,真命題是( 。
A.存在x∈R,使得ex≤0
B.“x>1”是“x>2”的充分不必要條件
C.x+$\frac{1}{x}$≥2對(duì)任意正實(shí)數(shù)x恒成立
D.“p或q是假命題”“¬p為真命題”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,F(xiàn)1、F2是橢圓的左、右焦點(diǎn),過(guò)F2作直線l交橢圓于A、B兩點(diǎn),若△F1AB的周長(zhǎng)為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l的斜率為0,且它的中垂線與y軸交于Q,求Q的縱坐標(biāo)的范圍;
(Ⅲ)是否在x軸上存在點(diǎn)M(m,0),使得x軸平分∠AMB?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知x與y 之間的一組數(shù)據(jù):
x0123
y1357
則y與x的線性回歸方程y=2x+1
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.函數(shù)f(x)=x3+ax2+bx+c,過(guò)曲線y=f(x)上的點(diǎn)P(1,f(x))的切線方程為y=3x+1.
(1)若y=f(x)在x=-2時(shí)有極值,求f(x)的表達(dá)式;
(2)若函數(shù)y=f(x)在區(qū)間(1,+∞)上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.以下判斷正確的是( 。
A.命題“負(fù)數(shù)的平方是正數(shù)”不是全稱命題
B.命題“?x∈N,x3>x”的否定是“?x∈N,x3>x”
C.“a=1”是“函數(shù)f(x)=sin 2ax的最小正周期為π”的必要不充分條件
D.“b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知條件p:A={x|x2+ax+1≤0},條件q:B={x|x2-3x+2≤0},若q是p的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案