18.定義在[-2,2]上的偶函數(shù)f(x)在[-2,0]上是減函數(shù),若f(x+1)<f(2x),則實(shí)數(shù)x的取值范圍是( 。
A.[-1,-$\frac{1}{3}$)B.[-2,$\frac{1}{3}$)C.(-$\frac{1}{3}$,1]D.(1,2]

分析 先確定函數(shù)f(x)在[0,2]上是增函數(shù),再將不等式轉(zhuǎn)化為f(|x+1|)<f(|2x|),即可求得x的取值范圍.

解答 解:∵函數(shù)f(x)是定義在[-2,2]上的偶函數(shù)f(x)在[-2,0]上是減函數(shù),
∴函數(shù)f(x)在[0,2]上是增函數(shù),
∵f(x+1)<f(2x),
∴f(|x+1|)<f(|2x|),
∴|x+1|<|2x|≤2,
∴-1≤x<-$\frac{1}{3}$
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性與單調(diào)性的綜合應(yīng)用,確定函數(shù)f(x)在[0,2]上是增函數(shù),等價(jià)轉(zhuǎn)化不等式是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)i為虛數(shù)單位,則(x-i)6的展開式中含x4的項(xiàng)為( 。
A.-15x4B.15x4C.-20ix4D.20ix4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為多少?
原料限額
A(噸)3212
B(噸)128

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)y=x2-bx+3是偶函數(shù),則實(shí)數(shù)b的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.有三個(gè)數(shù)成等比數(shù)列,它們的積為27,它們的和為13.求這三個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex(x+a)-x2+bx,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=x-2.
(1)求a,b的值;
(2)求f(x)的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=x3-x2+2x,則( 。
A.函數(shù)f(x)無極值點(diǎn)B.x=1為f(x)的極小值點(diǎn)
C.x=2為f(x)的極大值點(diǎn)D.x=2為f(x)的極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.直線l過點(diǎn)P(-2,1).
(1)若直線l與直線x+2y=1平行,求直線l的方程;
(2)若直線l與直線x+2y=1垂直,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2α,α∈A},則集合∁U(A∪B)=( 。
A.{2,4}B.{1,3,5}C.{1,2,4}D.{3,5}

查看答案和解析>>

同步練習(xí)冊(cè)答案