分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(Ⅱ)解關(guān)于導(dǎo)函數(shù)的不等式,求出a的范圍即可.
解答 解:(Ⅰ)f(x)的 定義域?yàn)椋?∞,$\frac{1}{2}$],
導(dǎo)函數(shù)f′(x)=$\frac{-x(5x+3a-2)}{\sqrt{1-2x}}$,
當(dāng)a=$\frac{17}{3}$,f′(x)=$\frac{-5x(x+3)}{\sqrt{1-2x}}$,
x | (-∞,-5) | -5 | (-5,0) | 0 | (0,$\frac{1}{2}$) |
f′(x) | - | 0 | + | 0 | - |
f(x) | 遞減 | 極小值 | 遞增 | 極大值 | 遞減 |
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 10 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 隨t的變化而變化 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “∥”后面是注釋內(nèi)容,對程序運(yùn)行起著重要作用 | |
B. | “∥”后面是程序執(zhí)行的指令,對程序運(yùn)行起著重要作用 | |
C. | “∥”后面是注釋內(nèi)容,對程序運(yùn)行不起作用 | |
D. | “∥”后面是程序執(zhí)行的指令,對程序運(yùn)行不起作用 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若α∥β,l?α,n?β,則l∥n | B. | 若α⊥β,l?α,則l⊥β | ||
C. | 若l⊥α,l∥β,則α⊥β | D. | 若l⊥n,m⊥n,則l∥m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{4}$ | B. | $\frac{9}{16}$ | C. | $\frac{9}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com