13.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的漸近線方程為( 。
A.4x±9y=0B.9x±4y=0C.3x±2y=0D.2x±3y=0

分析 把曲線的方程化為標準方程,求出a和b的值,再根據(jù)焦點在x軸上,求出漸近線方程.

解答 解:∵雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1,∴a=2,b=3,焦點在x軸上,
故漸近線方程為 y=±$\frac{a}$x=±$\frac{3}{2}$x,即3x±2y=0.
故選:C.

點評 本題考查雙曲線的標準方程,以及雙曲線的簡單性質(zhì)的應用,本題的關鍵是求出a、b的值,要注意雙曲線在x軸還是y軸上,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.一條河的兩岸平行,河水的流速為2m/s,一艘小船以10m/s的速度向垂直于對岸的方向行駛,求小船在靜水中的速度大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)y=x2-(4a+1)x+3a2+3a的圖象與x軸交于A、B兩點,若兩點間的距離等于2,則a的值為( 。
A.$\frac{3}{2}$B.-$\frac{1}{2}$C.$\frac{3}{2}$或-$\frac{1}{2}$D.$\frac{3}{2}$或-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點為A(-1,0),右焦點為F2($\sqrt{3}$,0),則雙曲線的漸近線方程為( 。
A.y=±$\sqrt{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列命題中的假命題是( 。
A.?x∈R,lgx=0B.?x∈R,x3>0C.?x∈R,tanx=1D.?x∈R,2x>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知α、β是方程x2+x+a=0的兩個實數(shù)根.
(1)求a的取值范圍
(2)試用a表示|α|+|β|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)$f(x)=xlnx+\frac{3}{2}$.
(I)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(II)若對定義域內(nèi)任意的x,$f(x)≥\frac{{-{x^2}+mx}}{2}$恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{2\sqrt{2}}{3}$,橢圓C的右焦點到直線x=$\frac{a}{e}$的距離為$\frac{\sqrt{2}}{4}$,橢圓C的下頂點為D.
(1)求橢圓C的標準方程;
(2)若過D點作兩條相互垂直的直線分別與橢圓C相交于點P,M.求證:直線PM經(jīng)過一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在長方體ABCD-A1B1C1D1中,AB=$\sqrt{2}$,BC=AA1=1,點P為對角線AC1上的動點,點Q為底面ABCD上的動點(點P,Q可以重合),則B1P+PQ的最小值為$\frac{3}{2}$.

查看答案和解析>>

同步練習冊答案