A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根據(jù)向量的加法法則進(jìn)行判斷①;利用共線(xiàn)向量基本定理判斷②;由向量共線(xiàn)的幾何意義知所在的線(xiàn)平行或重合判斷③;根據(jù)空間四點(diǎn)共面的等價(jià)條件進(jìn)行判斷④.
解答 解:①若A、B、C、D是空間任意四點(diǎn),則有$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$+$\overrightarrow{DA}$=$\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DA}=\overrightarrow{AD}+\overrightarrow{DA}$=$\overrightarrow{0}$,故①正確;
②由共線(xiàn)向量基本定理可知,$\overrightarrow$≠$\overrightarrow{0}$,則$\overrightarrow{a}$和$\overrightarrow$共線(xiàn)的充要條件是:?λ∈R,使$\overrightarrow{a}$=λ$\overrightarrow$,故②正確;
③若$\overrightarrow{a}$和$\overrightarrow$共線(xiàn),則$\overrightarrow{a}$與$\overrightarrow$所在直線(xiàn)平行或重合,故③錯(cuò)誤;
④對(duì)空間任意一點(diǎn)O與不共線(xiàn)的三點(diǎn)A、B、C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(其中x、y、z∈R),
且x+y+z=1,則P、A、B、C四點(diǎn)共面,故④正確.
∴正確命題的個(gè)數(shù)是3個(gè).
故選:C.
點(diǎn)評(píng) 本題主要考查與向量有關(guān)的命題的真假判斷,要求熟練掌握向量的有關(guān)概念,考查學(xué)生的推理判斷能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | c<b<a | B. | b<a<c | C. | c<a<b | D. | a<c<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,3) | B. | [0,3] | C. | [1,2) | D. | [1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x+y-π=0 | B. | 2x+2y-π=0 | C. | 2x-π2y-2π=0 | D. | 2x+π2y-2π=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com