精英家教網 > 高中數學 > 題目詳情
19.函數f(x)的定義域是(0,+∞),滿足對于任意x,y>0,有 f($\frac{x}{y}$)=f(x)-f(y),且當x>1時,有f(x)>0
(1)求f(1)的值;
(2)判斷并證明f(x)在區(qū)間(0,+∞)上的單調性;
(4)若f(6)=1,解不等式f(x+3)-f($\frac{1}{3}$)<2.

分析 (1)利用賦值法即可求f(1)的值;
(2)根據函數單調性的定義即可判斷f(x)的單調性并證明;
(3)結合函數單調性將不等式進行轉化即可得到結論.

解答 解:(1)令x=y>0,則f(1)=f(x)-f(x)=0,
所以f(1)=0.
(2)任取x1,x2∈(0,+∞),且x1<x2
則$f({x_2})-f({x_1})=f(\frac{x_2}{x_1})$,
因為x2>x1>0,所以$\frac{x_2}{x_1}$>1⇒$f(\frac{x_2}{x_1})$>0,
所以f(x2)-f(x1)>0
即f(x2)>f(x1),
所以f(x)在(0,+∞)上是增函數.
(3)因為f(6)=1,所以f(36)-f(6)=f(6),
所以f(36)=2f(6)=2.
由$f(x+3)-f(\frac{1}{3})<2$,得f(3x+9)<f(36),
所以$\left\{\begin{array}{l}x+3>0\\ 3x+9<36\end{array}\right.$⇒-3<x<9
所以原不等式的解為(-3,9).

點評 本題主要考查抽象函數的應用,根據條件結合函數單調性的性質進行轉化以及利用賦值法是解決抽象函數的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

9.已知正三棱柱ABC-A1B1C1,底面邊長AB=2,AB1⊥BC1,點O、O1分別是邊AC,A1C1的中點,建立如圖所示的空間直角坐標系.
(Ⅰ)求正三棱柱的側棱長;
(Ⅱ)求異面直線AB1與BC所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦點為F,右頂點為A,點B在橢圓上,且BF⊥x軸,若AB:BF=5:3,則橢圓的離心率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.設函數f(x)=x|x|+bx+c,給出下列四個命題:
①當c=0時,y=f(x)是奇函數;
②當b=0,c>0時,函數y=f(x)只有一個零點;
③函數y=f(x)的圖象關于點(0,c)對稱;
④函數y=f(x)至多有兩個零點.
其中正確命題的序號為①②③.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.函數$y={2^{\frac{1-x}{1+x}}}$的值域是$(0,\frac{1}{2})∪(\frac{1}{2},+∞)$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知函數f(x)=x3-x及其圖象曲線C
(1)當a=1時,求函數f(x)的單調區(qū)間及在(1,f(1))處的切線與曲線C的另一交點的橫坐標
(2)證明:若對于任意非零實數x1,曲線C與其點P1(x1,f(x1))處的切線交于另一點P2(x2,f(x2)),曲線C與其在點P2(x2,f(x2))處的切線交于另一點P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1、S2,則$\frac{S_1}{S_2}$為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知數列{an}滿足a1=$\frac{5}{3}$,3an+1-2an=2n+5.
(1)求證:數列{an-2n+1}為等比數列;
(2)求數列{an}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.如圖,已知橢圓的中心在坐標原點,焦點在x軸上,它的一個頂點為A(0,$\sqrt{2}$),且離心率等于$\frac{{\sqrt{3}}}{2}$,過點M(0,2)的直線l與橢圓相交于不同兩點P,Q,點N在線段PQ上.
(1)求橢圓的標準方程;
(2)設$\frac{{|\overrightarrow{PM}|}}{{|\overrightarrow{PN}|}}=\frac{{|\overrightarrow{MQ}|}}{{|\overrightarrow{NQ}|}}=λ$,若直線l與y軸不重合,試求λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知定義在R上的偶函數f(x)在(-∞,0]單調遞減,且f(-$\frac{1}{3}$)=0,則滿足f(log${\;}_{\frac{1}{8}}$x)+f(log8x)>0的x的取值范圍是(  )
A.(0,+∞)B.(0,$\frac{1}{2}$)∪(2,+∞)C.(0,$\frac{1}{8}$)∪($\frac{1}{2}$,2)D.(0,$\frac{1}{2}$)

查看答案和解析>>

同步練習冊答案