9.已知m,n是不重合的兩條直線,α,β是不重合的兩個平面,則下列命題中錯誤的是( 。
A.若m⊥α,m⊥β,則α∥βB.若m?α,m⊥β,則α⊥βC.若m⊥α,n∥α,則m⊥nD.若m⊥α,α⊥β,則m∥β

分析 由線面平行的性質(zhì)定理判斷出A不對,因是單選題故選A.對于B、C、D選項用平行和垂直的結(jié)論以及面面垂直的判定定理判斷

解答 解:對于A,同垂直于一條直線的兩個平面平行,故A正確;
對于B,若m?α,m⊥β,根據(jù)線面垂直的判定定理得到α⊥β,故B正確;
根據(jù)線面垂直的性質(zhì)定理和線面平行的性質(zhì)定理,得到C正確;
對于D,由m⊥α,β⊥α,可以得到m在β內(nèi),故D錯誤.
故選:D.

點評 本題考查了空間中的線面位置關(guān)系,用了線面平行的性質(zhì)定理,平行和垂直的結(jié)論以及面面垂直的判定定理判斷;當(dāng)然對于單選題選出正確答案即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某家庭打算用10年時間儲蓄20萬元購置一套商品房,為此每年需存銀行數(shù)額相同的?,年利率4%,按復(fù)利計算,求每年應(yīng)存入銀行多少錢?(參考數(shù)據(jù);1.0410≈1.480,1.049≈1.423)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.四邊形ABCD中,AC⊥BD且AC=2,BD=3,則$\overrightarrow{AB}$•$\overrightarrow{CD}$的最小值為-$\frac{13}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知雙曲線$\frac{x^2}{m+2}$-$\frac{y^2}{m+1}$=1的離心率為$\frac{{\sqrt{7}}}{2}$,則m=2或-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.$\sqrt{3}π$B.$2\sqrt{3}π$C.$({3+\sqrt{3}})π$D.$({3+2\sqrt{3}})π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,如果輸出的S=$\frac{1}{15}$,那么判斷框內(nèi)應(yīng)填入的條件是( 。
A.i<3B.i<4C.i<5D.i<6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={0,1},B={2,3},M={x|x=ab(a+b),a∈A,b∈B},則集合M的真子集的個數(shù)是(  )
A.16B.15C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.執(zhí)行如圖所示的程序框圖,輸出的S=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F作漸近線的垂線,垂足為P,線段OP的垂直平分線交y軸于點Q(其中O為坐標(biāo)原點),若OFP的面積是OQP的面積的6倍,則該雙曲線的離心率為(  )
A.$\sqrt{3}$B.2C.3D.$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案