A. | 若m⊥α,m⊥β,則α∥β | B. | 若m?α,m⊥β,則α⊥β | C. | 若m⊥α,n∥α,則m⊥n | D. | 若m⊥α,α⊥β,則m∥β |
分析 由線面平行的性質(zhì)定理判斷出A不對,因是單選題故選A.對于B、C、D選項用平行和垂直的結(jié)論以及面面垂直的判定定理判斷
解答 解:對于A,同垂直于一條直線的兩個平面平行,故A正確;
對于B,若m?α,m⊥β,根據(jù)線面垂直的判定定理得到α⊥β,故B正確;
根據(jù)線面垂直的性質(zhì)定理和線面平行的性質(zhì)定理,得到C正確;
對于D,由m⊥α,β⊥α,可以得到m在β內(nèi),故D錯誤.
故選:D.
點評 本題考查了空間中的線面位置關(guān)系,用了線面平行的性質(zhì)定理,平行和垂直的結(jié)論以及面面垂直的判定定理判斷;當(dāng)然對于單選題選出正確答案即可.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}π$ | B. | $2\sqrt{3}π$ | C. | $({3+\sqrt{3}})π$ | D. | $({3+2\sqrt{3}})π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i<3 | B. | i<4 | C. | i<5 | D. | i<6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 15 | C. | 8 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | 3 | D. | $\sqrt{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com