(2014•煙臺二模)已知向量=(x﹣1,2),=(4,y),若,則9x+3y的最小值為( )

A.2 B. C.6 D.9

 

C

【解析】

試題分析:由于?=0,即可得出x,y的關(guān)系,再利用基本不等式即可得出9x+3y的最小值.

【解析】
,∴(x﹣1,2)•(4,y)=0,化為4(x﹣1)+2y=0,即2x+y=2.

∴9x+3y≥===6,當(dāng)且僅當(dāng)2x=y=1時取等號.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教B版選修4-5 2.3平均值不等式練習(xí)卷(解析版) 題型:選擇題

已知x,y,z均為正數(shù),,則的最小值是( )

A.1 B.3 C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教B版選修4-5 1.3絕對值不等式的解法練習(xí)卷(解析版) 題型:選擇題

(2014•南昌模擬)對任意x∈R,且x≠0,不等式|x+|>|a﹣5|+1恒成立,則實數(shù)a的取值范圍是( )

A.(﹣∞,4)∪(6,+∞) B.(2,8) C.(3,5) D.(4,6)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教B版選修4-5 1.3絕對值不等式的解法練習(xí)卷(解析版) 題型:選擇題

(2014•南昌三模)若關(guān)于x的不等式|x﹣1|﹣|x﹣2|≥a2+a+1(x∈R)的解集為空集,則實數(shù)a的取值范圍為( )

A.(0,1) B.(﹣1,0)

C.(﹣∞,﹣1) D.(﹣∞,﹣1)∪(0,+∞)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教B版選修4-5 1.2基本不等式練習(xí)卷(解析版) 題型:選擇題

(2014•鶴城區(qū)二模)已知a,b為正實數(shù),函數(shù)y=2aex+b的圖象經(jīng)過點(O,1),則的最小值為( )

A.3+2 B.3﹣2 C.4 D.2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教B版選修4-5 1.2基本不等式練習(xí)卷(解析版) 題型:選擇題

(2014•煙臺三模)設(shè)二次函數(shù)f(x)=ax2﹣4x+c(x∈R)的值域為[0,+∞),則的最小值為( )

A.3 B. C.5 D.7

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教B版選修2-1 2.1曲線與方程練習(xí)卷(解析版) 題型:選擇題

(2014•黃岡模擬)已知對任意m∈R,直線x+y+m=0都不是f(x)=x3﹣3ax(a∈R)的切線,則a的取值范圍是( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教B版選修2-1 2.1曲線與方程練習(xí)卷(解析版) 題型:選擇題

(2014•信陽一模)曲線y=sinx+ex在點(0,1)處的切線方程是( )

A.x﹣3y+3=0 B.x﹣2y+2=0 C.2x﹣y+1=0 D.3x﹣y+1=0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教B版選修1-2 1.1獨立性檢驗練習(xí)卷(解析版) 題型:選擇題

(2014•濰坊三模)為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對該班50名學(xué)生進行了問卷調(diào)查,得到如下的2×2列聯(lián)表.

 

喜愛打籃球

不喜愛打籃球

合計

男生

20

5

25

女生

10

15

25

合計

30

20

50

 

則至少有( )的把握認為喜愛打籃球與性別有關(guān).

A.95% B.99% C.99.5% D.99.9%

 

查看答案和解析>>

同步練習(xí)冊答案