12.下列各函數(shù)中,最小值為2的是( 。
A.$y=x+\frac{1}{x}$B.$y=sinx+\frac{1}{sinx},x∈(0,\frac{π}{2})$
C.$y=\frac{{{x^2}+2}}{{\sqrt{{x^2}+1}}}$D.$y=x+\frac{2}{{\sqrt{x}}}-2$

分析 對于A、B、C選項可利用對勾函數(shù)的性質(zhì)求解;D選項主要利用換元法求解;

解答 解:
A.y=x+$\frac{1}{x}$,當(dāng)x>0時,y≥2;當(dāng)x<0時,y<-2.故無最小值,不合題意;
B.令 sinx=t,x∈(0,$\frac{π}{2}$),t∈(0,1);
     則y=t+$\frac{1}{t}$,故y<2,不合題意;
C.令 x2+1=t≥1,則y=$\frac{t+1}{\sqrt{t}}$=$\sqrt{t}+\frac{1}{\sqrt{t}}$≥2,符合題意;
D.y=$x+\frac{2}{\sqrt{x}}-2$,令$\frac{1}{\sqrt{x}}=t>0$,$\sqrt{x}=\frac{1}{t}$
    則 y=$\frac{1}{{t}^{2}}+\frac{2}{t}-2$>-2,故不符合題意;
故選:C.

點評 本題主要考查了基本不等式,對勾函數(shù)性質(zhì)以及換元法求值域應(yīng)用,屬常規(guī)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知α∈($\frac{π}{2}$,π),sinα=$\frac{4}{5}$,則sin2α=$-\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖是某賽季甲、乙兩名籃球運動員每場比賽得分的莖葉圖,則甲、乙兩人這幾場比賽得分的中位數(shù)之和是( 。
A.51B.58C.61D.62

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)a=$\int_0^π$(sinx+cosx)dx,則二項式(${\root{3}{x}$-$\frac{1}{{a\sqrt{x}}}}$)6的展開式中含x2項的系數(shù)1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若將函數(shù)f(x)=2sin(2x+$\frac{π}{3}}$)的圖象向右平移φ個單位,所得圖象關(guān)于y軸對稱,則φ的最小正值是( 。
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$-\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}中,a1=3,通項an=2np+nq,(p,q為常數(shù)),且a1,a4,a5成等差數(shù)列,求:
(1)p和q的值;
(2)求該數(shù)列前n項的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若直線l與拋物線y2=4x交于A,B兩點,且線段AB的中點為M(3,2),則直線l的方程為(  )
A.x-y-1=0B.x+y-5=0C.2x-y-4=0D.2x+y-8=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,為保護河上古橋OA,規(guī)劃建一座新橋BC,同時設(shè)立一個圓形保護區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點的距離均不少于80m.經(jīng)測量,點A位于點O正北方向60m處,點C位于點O正東方向170m處(OC為河岸),tan∠BCO=$\frac{4}{3}$.
(1)求新橋BC的長;
(2)當(dāng)OM多長時,圓形保護區(qū)的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,λ),若$\overrightarrow{a}$⊥$\overrightarrow$,則λ為( 。
A.6B.-6C.1.5D.-1.5

查看答案和解析>>

同步練習(xí)冊答案