分析 (1)利用奇函數(shù)的定義,即可判斷;
(2)根據(jù)單調(diào)性的定義證明步驟,可得結(jié)論;
(3)由(2)知:f(x)為[1,5]上的增函數(shù),$f{(x)_{min}}=\frac{1}{3}$,$m<\frac{1}{3}$,即可求m的取值范圍.
解答 解:(1)函數(shù)f(x)的定義域?yàn)镽,$f(-x)=\frac{{{2^{-x}}-1}}{{{2^{-x}}+1}}=\frac{{1-{2^x}}}{{1+{2^x}}}$,
∴f(-x)=f(x),∴f(x)為奇函數(shù).
(2)$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}=1-\frac{2}{{{2^x}+1}}$,
任取x1,x2且x1<x2,則$f({x_1})-f({x_2})=\frac{2}{{{2^{x_1}}+1}}-\frac{2}{{{2^{x_2}}+1}}=\frac{{2({2^{x_2}}-{2^{x_1}})}}{{({2^{x_1}}+1)({2^{x_2}}+1)}}$,
∵x1<x2,∴${2^{x_1}}<{2^{x_2}}$,∴${2^{x_1}}-{2^{x_2}}<0$,
又${2^{x_1}}+1>0$,${2^{x_2}}+1>0$,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)為R上的增函數(shù).
(3)由(2)知:f(x)為[1,5]上的增函數(shù),
∴$f{(x)_{min}}=\frac{1}{3}$,∴$m<\frac{1}{3}$,
∴m的取值范圍為$\left\{{m|m<\frac{1}{3}}\right\}$.
點(diǎn)評 本題考查函數(shù)的單調(diào)性與奇偶性,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 33 | C. | 66 | D. | 99 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,0)∪(2,+∞) | B. | (-2,0)∪(0,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-∞,-2)∪(0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{2}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com