4.在?ABCD中,$\overrightarrow{AB}$•$\overrightarrow{AC}$=8,$\overrightarrow{AB}$•$\overrightarrow{AD}$=-12,則|$\overrightarrow{AB}$|=2$\sqrt{5}$.

分析 根據(jù)向量的加減的集合意義以及向量的數(shù)量積的運(yùn)算即可求出.

解答 解:∵$\overrightarrow{AB}$•$\overrightarrow{AC}$=8,$\overrightarrow{AB}$•$\overrightarrow{AD}$=-12,
∴$\overrightarrow{AB}$•($\overrightarrow{AB}$+$\overrightarrow{AD}$)=8,
∴|$\overrightarrow{AB}$|2+$\overrightarrow{AB}$•$\overrightarrow{AD}$=8
∴|$\overrightarrow{AB}$|2=8+12=20,
∴|$\overrightarrow{AB}$|=2$\sqrt{5}$,
故答案為:2$\sqrt{5}$.

點(diǎn)評(píng) 本題考查了向量的幾何意義和向量的數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在三棱錐P-ACD中,AD⊥CD,AD=CD=2,△PAD為正角形,點(diǎn)F是棱PD的中點(diǎn),且平面PAD⊥平面ACD.
(1)求證;AF⊥平面PCD;
(2)求二面角P-AC-F的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.若公比為q的等比數(shù)列{an}的首項(xiàng)a1=1且滿足an=$\frac{{a}_{n-1}+{a}_{n-2}}{2}$(n=3,4,…).
(1)求q的值和{an}的通項(xiàng)公式;
(2)令bn=$\frac{n}{2}$•an,求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)若數(shù)列{bn}不為等差數(shù)列,不等式-m2+$\frac{5}{2}$m+3≥(2-9Sn)•(-1)n-($\frac{1}{2}$)n-1對(duì)?n∈N*恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某大學(xué)的一個(gè)社會(huì)實(shí)踐調(diào)查小組,在對(duì)大學(xué)生的良好“光盤習(xí)慣”的調(diào)查中,隨機(jī)發(fā)放了120份問卷.對(duì)收回的100份有效問卷進(jìn)行統(tǒng)計(jì),得到如下2×2列聯(lián)表:
做不到光盤能做到光盤合計(jì)
451055
301545
合計(jì)7525100
(1)若在犯錯(cuò)誤的概率不超過P的前提下認(rèn)為良好“光盤習(xí)慣”與性別有關(guān),那么根據(jù)臨界值最精確的P的值應(yīng)為多少?請(qǐng)說明理由;
(2)現(xiàn)按女生是否做到光盤進(jìn)行分層,從45份女生問卷中抽取了6份問卷,若從這6份問卷中隨機(jī)抽取2份,求兩份問卷結(jié)果都是能做到光盤的概率.
附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
獨(dú)立性檢驗(yàn)臨界表:
P(K2≥k00.250.150.100.050.025
K01.3232.0722.7063.8405.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0,b>0)的一條漸近線方程為y=-2x,則雙曲線的實(shí)軸長(zhǎng)為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)=cos2(ωx+φ)-$\frac{1}{2}$(ω>0,0<φ<$\frac{π}{2}$)的最小正周期為π,且f($\frac{π}{8}$)=$\frac{1}{4}$.
(1)求ω和φ的值;
(2)若函數(shù)f(x)-m=0在區(qū)間[$\frac{π}{24}$,$\frac{13π}{24}$]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知向量$\overrightarrow{a}$=(1,y),$\overrightarrow$=(-2,4),若$\overrightarrow{a}$⊥$\overrightarrow$,則|2$\overrightarrow{a}$+$\overrightarrow$|=(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知數(shù)列{xn}滿足:x1=1,xn+1=-xn+$\frac{1}{2}$,則數(shù)列{xn}的前21項(xiàng)的和為(  )
A.5B.6C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知AB是⊙O的直徑,AP是⊙O的切線,A為切點(diǎn),BP與⊙O交于C點(diǎn),AP的中點(diǎn)為D.
(1)求證:四點(diǎn)O,A,D,C共圓;
(2)求證:AC•AP=PC•AB.

查看答案和解析>>

同步練習(xí)冊(cè)答案