12.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an=$\frac{1}{2}{S_n}$+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log2an,cn=$\frac{1}{{{b_n}{b_{n+1}}}}$,求數(shù)列{cn}的前n項(xiàng)和為Tn

分析 (1)利用遞推關(guān)系與等比數(shù)列的通項(xiàng)公式即可得出.
92)利用對數(shù)的運(yùn)算性質(zhì)、“裂項(xiàng)求和”方法即可得出.

解答 解:(1)由題意,${a_n}=\frac{1}{2}{S_n}+1$,
∴${a_{n-1}}=\frac{1}{2}{S_{n-1}}+1$(n≥2,n∈N*),
兩式相減:得${a_n}-{a_{n-1}}=\frac{1}{2}{a_n}$,
即an=2an-1,
又${a_1}=\frac{1}{2}{S_1}+1$,∴a1=2,
∴數(shù)列{an}是首項(xiàng)為2,公比為2的等比數(shù)列,
∴${a_n}={2^n}$.
(2)由(1)可得,${b_n}={log_2}{a_n}={log_2}{2^n}=n$,
∴${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
∴${T_n}=(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1})$=$1-\frac{1}{n+1}=\frac{n}{n+1}$.

點(diǎn)評 本題考查了遞推關(guān)系、“裂項(xiàng)求和”方法、對數(shù)運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}中,a1=1,an=an-1+2(n≥2),則a10=(  )
A.17B.18C.19D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)全集U=R,A={x|y=lg(2x-x2)},B={y|y=cos x},則圖中陰影部分表示的區(qū)間是( 。
A.[-1,2)B.(-1,2)C.(-∞,-1)∪[2,+∞)D.(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列各組數(shù)中最小的數(shù)是( 。
A.1111(2)B.210(6)C.1000(4)D.101(8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知平面向量$\overrightarrow a$=(1,-2),$\overrightarrow b$=(2,m),且$\overrightarrow a$∥$\overrightarrow b$,則3$\overrightarrow a$+2$\overrightarrow b$=( 。
A.(7,2)B.(7,-14)C.(7,-4)D.(7,-8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)(2$\frac{3}{5}$)0+2-2$•(2\frac{1}{4})^{\frac{1}{2}}+(\frac{25}{36})^{0.5}+\sqrt{(-2)^{2}}$
(2)(lg2)2+lg5•lg20+lg100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.$f(x)=x,g(x)=\sqrt{x^2}$B.$f(x)=\frac{{{x^2}-1}}{x-1},g(x)=x+1$
C.$f(x)=x,g(x)=\root{3}{x^3}$D.$f(x)=|x|,\;g(x)={(\sqrt{x})^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.計(jì)算:${0.064^{-\frac{1}{3}}}-{(-\frac{1}{8})^0}+{16^{\frac{3}{4}}}+{0.25^{\frac{1}{2}}}$=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知兩平行直線4x-2y+7=0,2x-y+1=0之間的距離等于坐標(biāo)原點(diǎn)O到直線l:x-2y+m=0(m>0)的距離的一半.
(1)求m的值;
(2)判斷直線l與圓C:x2+(y-2)2=$\frac{1}{5}$的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案