分析 (Ⅰ)將直線l1:y=kx+m代入橢圓方程,消去y,可得x的方程,運(yùn)用韋達(dá)定理和判別式大于0,再由中點(diǎn)坐標(biāo)公式,直線和圓相切的條件:d=r,解方程可得m的值;
(Ⅱ)運(yùn)用弦長公式可得|AB|,把l2:y=kx代入橢圓方程求得CD的長,可得λ=$\frac{|AB|}{|CD|}$,化簡整理,由二次函數(shù)的最值求法,即可得到最小值.
解答 解:(Ⅰ)l1:y=kx+m代入${C_1}:\frac{x^2}{16}+\frac{y^2}{4}=1$,
得(1+4k2)x2+8kmx+4(m2-4)=0,
△=64k2m2-16(1+4k2)(m2-4)>0恒成立,化為4+16k2>m2,
設(shè)A(x1,y1),B(x2,y2),
則$\left\{{\begin{array}{l}{{x_1}+{x_2}=-\frac{8km}{{1+4{k^2}}}}\\{{x_1}{x_2}=\frac{{4({m^2}-4)}}{{1+4{k^2}}}}\end{array}}\right.$,所以$-\frac{4km}{{1+4{k^2}}}=\frac{4}{3}$①,
又$d=\frac{|k+m|}{{\sqrt{1+{k^2}}}}=1$,得$k=\frac{{1-{m^2}}}{2m}$②,聯(lián)立①②得m4-m2-2=0,
解得$m=\sqrt{2}$.
(Ⅱ)由(Ⅰ)得$|{x_1}-{x_2}|=\frac{{4\sqrt{16{k^2}-{m^2}+4}}}{{1+4{k^2}}}$,
所以$|AB|=\sqrt{1+{k^2}}•\frac{{4\sqrt{16{k^2}-{m^2}+4}}}{{1+4{k^2}}}$,
把l2:y=kx代入${C_1}:\frac{x^2}{16}+\frac{y^2}{4}=1$,
得${x^2}=\frac{16}{{1+4{k^2}}}$,所以$|CD|=\sqrt{1+{k^2}}•\frac{8}{{\sqrt{1+4{k^2}}}}$,
可得$λ=\frac{|AB|}{|CD|}=\frac{{\sqrt{16{k^2}-{m^2}+4}}}{{2\sqrt{1+4{k^2}}}}=\frac{1}{2}\sqrt{4-\frac{m^2}{{1+4{k^2}}}}$
=$\frac{1}{2}\sqrt{4-\frac{m^2}{{1+4{{(\frac{{1-{m^2}}}{2m})}^2}}}}$=$\frac{1}{2}\sqrt{4-\frac{m^4}{{{m^4}-{m^2}+1}}}=\frac{1}{2}\sqrt{4-\frac{1}{{{{(\frac{1}{m^2}-\frac{1}{2})}^2}+\frac{3}{4}}}}≥\frac{{\sqrt{6}}}{3}$,
當(dāng)$m=\sqrt{2},k=-\frac{{\sqrt{2}}}{4}$,λ取最小值$\frac{{\sqrt{6}}}{3}$.
點(diǎn)評 本題考查直線與橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和中點(diǎn)坐標(biāo)公式,以及直線和圓相切的條件:d=r,同時(shí)考查弦長公式的運(yùn)用,以及二次函數(shù)的最值求法,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 32 | D. | 128 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b>c>a | B. | b>a>c | C. | a>b>c | D. | c>a>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com