16.德國(guó)數(shù)學(xué)家科拉茨1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即$\frac{n}{2}$);如果n是奇數(shù),則將它乘3加1(即3n+1),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.對(duì)于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)n(首項(xiàng))按照上述規(guī)則施行變換后的第8項(xiàng)為1(注:1可以多次出現(xiàn)),則n的所有不同值的個(gè)數(shù)為( 。
A.4B.6C.32D.128

分析 利用第八項(xiàng)為1出發(fā),按照規(guī)則,逆向逐項(xiàng)即可求出n的所有可能的取值.

解答 解:如果正整數(shù)n按照上述規(guī)則施行變換后的第八項(xiàng)為1,
則變換中的第7項(xiàng)一定是2,
變換中的第6項(xiàng)一定是4;
變換中的第5項(xiàng)可能是1,也可能是8;
變換中的第4項(xiàng)可能是2,也可是16,
變換中的第4項(xiàng)是2時(shí),變換中的第3項(xiàng)是4,變換中的第2項(xiàng)是1或8,變換中的第1項(xiàng)是2或16
變換中的第4項(xiàng)是16時(shí),變換中的第3項(xiàng)是32或5,變換中的第2項(xiàng)是64或108,變換中的第1項(xiàng)是128,21或20,3
則n的所有可能的取值為2,3,16,20,21,128共6個(gè),
故選:B.

點(diǎn)評(píng) 本題主要考查歸納推理的應(yīng)用,利用變換規(guī)則,進(jìn)行逆向驗(yàn)證是解決本題的關(guān)鍵,考查學(xué)生的推理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,四邊形ABCD為菱形,ACFE為平行四邊形,且平面ACFE⊥平面ABCD,設(shè)BD與AC相交于點(diǎn)G,H為FG的中點(diǎn).
(1)證明:BD⊥CH;
(2)若$AB=BD=2,AE=\sqrt{3},CH=\frac{{\sqrt{3}}}{2}$;
①求三棱錐F-BDC的體積.
②求二面角B-DF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.拋物線y2=2px(p>0)上的動(dòng)點(diǎn)Q到焦點(diǎn)的距離的最小值為$\frac{3}{2}$,則p=(  )
A.$\frac{1}{2}$B.2C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)M(2,0)的直線與拋物線相交于A,B兩點(diǎn),與拋物線的準(zhǔn)線相交于點(diǎn)C,$|{BF}|=\frac{3}{2}$,則$\frac{{|{BC}|}}{{|{AC}|}}$=( 。
A.1:4B.1:5C.1:7D.1:6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.拋物線y=8x2的準(zhǔn)線方程是y=-$\frac{1}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a,b,c,d∈(0,+∞),求證:$\frac{ad+bc}{bd}$+$\frac{bc+ad}{ac}$≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知雙曲線$\frac{x^2}{m}-{y^2}=1$過拋物線y2=8x的焦點(diǎn),則此雙曲線的漸近線方程為$y=±\frac{1}{2}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C1:$\frac{x^2}{16}+\frac{y^2}{4}$=1,直線l1:y=kx+m(m>0)與圓C2:(x-1)2+y2=1相切且與橢圓C1交于A,B兩點(diǎn).
(Ⅰ)若線段AB中點(diǎn)的橫坐標(biāo)為$\frac{4}{3}$,求m的值;
(Ⅱ)過原點(diǎn)O作l1的平行線l2交橢圓于C,D兩點(diǎn),設(shè)|AB|=λ|CD|,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知坐標(biāo)原點(diǎn)為O,過拋物線y2=4x的焦點(diǎn)F作一直線l,與拋物線交于A,B兩點(diǎn),若|$\overrightarrow{AB}$|=6,則$\overrightarrow{FA}$$•\overrightarrow{FB}$=( 。
A.-6B.-2C.2D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案