10.已知拋物線的頂點在原點,對稱軸為x軸,焦點在直線3x-4y-12=0上,那么拋物線通徑長是16.

分析 由已知拋物線的頂點在原點,對稱軸為X軸,焦點為(4,0),從而求出拋物線方程為y2=16x,由此能求出拋物線通徑長.

解答 解:直線3x-4y-12=0 中,
當(dāng)y=0時x=4,∴直線與x軸交點為(4,0),
由已知拋物線的頂點在原點,對稱軸為X軸,焦點為(4,0),
∴$\frac{p}{2}$=4,即P=8,
∴拋物線方程為y2=16x,
拋物線通就是過拋物線焦點且垂直于對稱軸的弦長,
聯(lián)立$\left\{\begin{array}{l}{x=4}\\{{y}^{2}=16x}\end{array}\right.$,得M(4,8),N(4,-8),
∴拋物線通徑|MN|=16.
故答案為:16.

點評 本題考查拋物線的通項長的求法,是中檔題,解題時要認真審題,注意拋物線的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,直線l:y=x+b與拋物線C:x2=4y相切于點A.
(1)求實數(shù)b的值;
(2)求以點A為圓心,且與拋物線C的準線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a,b,c,d∈(0,+∞),求證:$\frac{ad+bc}{bd}$+$\frac{bc+ad}{ac}$≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.以一年為一個調(diào)查期,在調(diào)查某商品出廠價格及銷售價格時發(fā)現(xiàn):每件商品的出廠價格是在6元基礎(chǔ)上按月份隨正弦型函數(shù)曲線波動,已知3月份出廠價格最高為8元,7月份出廠價格最低為4元,而每件商品的銷售價格是在8元基礎(chǔ)上同樣按月份隨正弦型函數(shù)曲線波動,且5月份銷售價格最高為10元,9月份銷售價格最低為6元,假設(shè)某商店每月購進這種商品m件,且當(dāng)月售完,則該商店的月毛利潤的最大值為6元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C1:$\frac{x^2}{16}+\frac{y^2}{4}$=1,直線l1:y=kx+m(m>0)與圓C2:(x-1)2+y2=1相切且與橢圓C1交于A,B兩點.
(Ⅰ)若線段AB中點的橫坐標為$\frac{4}{3}$,求m的值;
(Ⅱ)過原點O作l1的平行線l2交橢圓于C,D兩點,設(shè)|AB|=λ|CD|,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知拋物線y2=2px(p>0)的準線與x軸的交點為Q,過點Q的直線與拋物線相切于點P,F(xiàn)是拋物線的焦點,若△PQF的面積為8,則P的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)f(x)是定義域R上的函數(shù),且f(0)=1,對任意x,y∈R,恒有f(x-y)=f(x)-y(2x-y+1),求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=2$\sqrt{2-x}$+$\sqrt{2x-3}$的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.2015年7月9日21時15分,臺風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災(zāi),5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟損失12.99億元,距離陸豐市222千米的梅州也受到了臺風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出頻率分布直方圖(如圖):
(Ⅰ)試根據(jù)頻率分布直方圖估計小區(qū)平均每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅱ)小明向班級同學(xué)發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過4000元的居民中隨機抽出2戶進行捐款援助,設(shè)抽出損失超過8000元的居民為ξ戶,求ξ的分布列和數(shù)學(xué)期望;
(Ⅲ)臺風(fēng)后區(qū)委會號召該小區(qū)居民為臺風(fēng)重災(zāi)捐款,小明調(diào)查的50戶居民捐款情況如表,在表格空白處填寫正確數(shù)字,并說明是否有95%以上的把握認為捐款數(shù)額多于或少于500元和自身經(jīng)濟損失是否到4000元有關(guān)?

 經(jīng)濟損失不超過4000元 經(jīng)濟損失超過4000元 合計 
 捐款超過500元 30  
 捐款不超過500元  6 
 合計   
 P(K2≥k)0.15  0.100.05  0.0250.010  0.0050.001 
 k 2.0722.706  3.8415.024  6.6357.879  10.828
附:臨界值表參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

同步練習(xí)冊答案