6.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD‖BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=AD=2,BC=1,CD=$\sqrt{3}$.
(Ⅰ)求證:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C為30°,設PM=t•MC,試確定t的值.

分析 (Ⅰ)法一:由AD∥BC,BC=$\frac{1}{2}$AD,Q為AD的中點,知四邊形BCDQ為平行四邊形,故CD∥BQ.由∠ADC=90°,知QB⊥AD.由平面PAD⊥平面ABCD,知BQ⊥平面PAD.由此能夠證明平面PQB⊥平面PAD.
法二:由AD∥BC,BC=$\frac{1}{2}$AD,Q為AD的中點,知四邊形BCDQ為平行四邊形,故CD∥BQ.由∠ADC=90°,知∠AQB=90°.由PA=PD,知PQ⊥AD,故AD⊥平面PBQ.由此證明平面PQB⊥平面PAD.
(Ⅱ)由PA=PD,Q為AD的中點,知PQ⊥AD.由平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,知PQ⊥平面ABCD.以Q為原點建立空間直角坐標系,利用向量法能夠求出t=3.

解答 證明:(Ⅰ)證法一:∵AD∥BC,BC=1,AD=2,Q為AD的中點,
∴四邊形BCDQ為平行四邊形,
∴CD∥BQ.
∵∠ADC=90°
∴∠AQB=90°,即QB⊥AD.
又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴BQ⊥平面PAD.
∵BQ?平面PQB,
∴平面PQB⊥平面PAD. …(9分)
證法二:AD∥BC,BC=1,AD=2,Q為AD的中點,
∴四邊形BCDQ為平行四邊形,
∴CD∥BQ.
∵∠ADC=90°
∴∠AQB=90°.
∵PA=PD,
∴PQ⊥AD.
∵PQ∩BQ=Q,
∴AD⊥平面PBQ.
∵AD?平面PAD,
∴平面PQB⊥平面PAD.…(9分)
(Ⅱ)∵PA=PD,Q為AD的中點,
∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD.
如圖,以Q為原點建立空間直角坐標系.
則平面BQC的法向量為$\overrightarrow n=(0,0,1)$;
Q(0,0,0),$P(0,0,\sqrt{3})$,$B(0,\sqrt{3},0)$,$C(-1,\sqrt{3},0)$.
設M(x,y,z),則$\overrightarrow{PM}=(x,y,z-\sqrt{3})$,$\overrightarrow{MC}=(-1-x,\sqrt{3}-y,-z)$,
∵$\overrightarrow{PM}=t\overrightarrow{MC}$,
∴$\left\{\begin{array}{l}x=t(-1-x)\\ y=t(\sqrt{3}-y)\\ z-\sqrt{3}=t(-z)\end{array}\right.$,∴$\left\{\begin{array}{l}x=-\frac{t}{1+t}\\ y=\frac{{\sqrt{3}t}}{1+t}\\ z=\frac{{\sqrt{3}}}{1+t}\end{array}\right.$…(12分)
在平面MBQ中,$\overrightarrow{QB}=(0,\sqrt{3},0)$,$\overrightarrow{QM}=(-\frac{t}{1+t},\frac{{\sqrt{3}t}}{1+t},\frac{{\sqrt{3}}}{1+t})$,
∴平面MBQ法向量為$\overrightarrow m=(\sqrt{3},0,t)$.…(13分)
∵二面角M-BQ-C為30°,
∴$cos{30°}=\frac{\overrightarrow n•\overrightarrow m}{{|{\overrightarrow n}||{\overrightarrow m}|}}=\frac{t}{{\sqrt{3+0+{t^2}}}}=\frac{{\sqrt{3}}}{2}$,
∴t=3.…(15分)

點評 本題主要考查空間面面垂直的判斷以及二面角的求解,建立坐標系,求出平面的法向量,利用向量法是解決本題的關鍵.解題時要認真審題,仔細解答,注意合理地進行等價轉化,合理地運用向量法進行解題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)是奇函數(shù),當x>0時,f(x)=log2(x2+2)+$\frac{m}{{x}^{2}}$,且f(-$\sqrt{2}$)=-3,則實數(shù)m的值為( 。
A.-6B.-2C.2D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=aex+x2,g(x)=cosπx+bx,直線l與曲線y=f(x)切于點(0,f(0)),且與曲線y=g(x)切于點(1,g(1)),則a+b=-2,直線l的方程為x+y+1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖1ABCD為矩形,其中BC邊長度為2,AB邊長度為1,E為AD的中點,將△ABE沿BE折疊使得平面ABE⊥平面BEDC,連接AC、AD(如圖2).
(1)求圖2的側視圖的面積;
(2)求二面角A-CD-B所成角的正切值;
(3)點M在AD上,且AM:MD=5:2,點N在棱AC上,BN∥平面EMC,求AN的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,四棱錐P-ABCD的底面是邊長為1的正方形,PA⊥底面ABCD,E、F分別為AB、PC的中點.
(1)若PA=1,求證:EF⊥平面PCD;
(2)若PA=2,試問在線段EF上是否存在點Q,使得二面角Q-AP-D的余弦值為$\frac{\sqrt{5}}{5}$?若存在,確定點Q的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)f(x)=log2x-4+2x的零點位于區(qū)間( 。
A.(3,4)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,多面體ABCDEF中,四邊形ABEF是平行四邊形,DF∥BC,BC=BF=2DF=2$\sqrt{2}$,∠BAC=90°,AB=AC,點E在底面ABC的射影為BC的中點O.
(Ⅰ)求證:ED⊥平面EBC;
(Ⅱ)求二面角E-BD-F的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=logax,x∈[2,4](a>0,a≠1),函數(shù)的最大值比最小值大1,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某汽車駕駛學校在學員結業(yè)前對其駕駛技術進行4次考核,規(guī)定:按順序考核,一旦考核合格就不必參加以后的考核,否則還需要參加下次考核,若小李參加每次考核合格的概率依次組成一個公差為$\frac{1}{8}$的等差數(shù)列,他參加第一次考核合格的概率超過$\frac{1}{2}$,且他直到參加第二次考核才合格的概率為$\frac{9}{32}$.
(1)求小李第一次參加考核就合格的概率p1;
(2)求小李參加考核的次數(shù)X的分布列和數(shù)學期望E(X).

查看答案和解析>>

同步練習冊答案