15.已知雙曲線與橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$的焦點(diǎn)重合,它們的離心率之和為$\frac{14}{5}$,則雙曲線的漸近線方程為( 。
A.$y=±\frac{{\sqrt{3}}}{3}x$B.$y=±\frac{5}{3}x$C.$y=±\frac{3}{5}x$D.$y=±\sqrt{3}x$

分析 求出橢圓的焦點(diǎn)坐標(biāo)和離心率,進(jìn)而求得雙曲線離心率,根據(jù)離心率和焦點(diǎn)坐標(biāo)建立方程組,求得a和b,則雙曲線的漸近線方程即可.

解答 解:橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$,
焦點(diǎn)為(4,0),(-4,0),離心率e=$\frac{4}{5}$,
∴雙曲線離心率為$\frac{14}{5}$-$\frac{4}{5}$=2,
設(shè)雙曲線中c=4,可得a=2,可得b=2$\sqrt{3}$,
故雙曲線的漸近線方程為:y=$±\sqrt{3}x$.
故選:D.

點(diǎn)評 本題主要考查了拋物線的簡單性質(zhì),雙曲線的漸近線方程.考查了學(xué)生對雙曲線和橢圓基本知識的掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若關(guān)于x的不等式x2-2mx+1>0在[$\frac{1}{2}$,2)內(nèi)恒成立,則m的取值范圍(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某學(xué)校高一年級學(xué)生某次身體素質(zhì)體能測試的原始成績采用百分制,已知所有這些學(xué)生的原始成績均分布在[50,100]內(nèi),發(fā)布成績使用等級制.各等級劃分標(biāo)準(zhǔn)見表.規(guī)定:A、B、C三級為合格等級,D為不合格等級.
百分制85以及以上70分到84分60分到69分60分以下
等級ABCD
為了解該校高一年級學(xué)生身體素質(zhì)情況,從中抽取了n名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計(jì).按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示.
(I)求n和頻率分布直方圖中的x,y的值;
(Ⅱ)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該校高一學(xué)生中任選3人,求至少有1人成績是合格等級的概率;
(Ⅲ)在選取的樣本中,從A、C兩個(gè)等級的學(xué)生中隨機(jī)抽取了3名學(xué)生進(jìn)行調(diào)研,記ξ表示所抽取的3名學(xué)生中為C等級的學(xué)生人數(shù),求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知a>c>b>0,則對$\frac{a-b}{c}$+$\frac{b-c}{a}$+$\frac{c-a}$的符號判斷正確的是( 。
A.只取正號B.只取負(fù)號
C.可取正號,也可取負(fù)號D.可取正號,負(fù)號,也可取零

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y≥0\\ x+y≤2\\ y≥0\end{array}\right.$,則z=3x-y的最大值是( 。
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某新建公司規(guī)定,招聘的職工須參加不小于80小時(shí)的某種技能培訓(xùn)才能上班.公司人事部門在招聘的職工中隨機(jī)抽取200名參加這種技能培訓(xùn)的數(shù)據(jù),按時(shí)間段[75,80),[80,85),[85,90),[90,95),[95,100](單位:小時(shí))進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200名職工中,參加這種技能培訓(xùn)服務(wù)時(shí)間不少于90小時(shí)的人數(shù),并估計(jì)從招聘職工中任意選取一人,其參加這種技能培訓(xùn)時(shí)間不少于90小時(shí)的概率;
(Ⅱ)從招聘職工(人數(shù)很多)中任意選取3人,記X為這3名職工中參加這種技能培訓(xùn)時(shí)間不少于90小時(shí)的人數(shù).試求X的分布列和數(shù)學(xué)期望E(X)和方差D(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知離心率為$\frac{\sqrt{2}}{2}$的橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)與圓N:x2+(y-1)2=$\frac{1}{2}$的公共弦長為$\sqrt{2}$
(1)求橢圓C的方程;
(2)若橢圓C上存在兩個(gè)不同的點(diǎn)A,B關(guān)于過點(diǎn)M(-$\frac{2}$,0)且不與坐標(biāo)軸垂直的直線l對稱,O為坐標(biāo)原點(diǎn),求△AOB面積的最大值,求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在一種稱為“幸運(yùn)35”的福利彩票中,規(guī)定從01,02,…,35這35個(gè)號碼中任選7個(gè)不同號碼組成一注.并通過搖獎機(jī)從這35個(gè)號碼中搖出7個(gè)不同的號碼作為特等獎,與特等獎號碼僅6個(gè)相同的為一等獎,僅5個(gè)相同的為二等獎,僅4個(gè)相同的為三等獎,其他的情況不得獎,為了便于計(jì)算,假定每個(gè)投注號只有1次中獎釩機(jī)(只計(jì)獎金額最大的獎).該期的每組號碼均有人買,且彩票無重復(fù)號碼,若每注彩票為2元,特等獎獎金為100萬元/注,一等獎獎金為1萬元/注,二等獎獎金為100元/注,三等獎獎金為10元/注.試求;
(1)獎金額X(元)的概率分布:;
(2)這一期彩票售完可以為福利事業(yè)籌集多少獎金?(不計(jì)發(fā)售彩票的費(fèi)用).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知平面向量$\overrightarrowa$,$\overrightarrow b$滿足$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,$\overrightarrow a•\overrightarrow b=1$.則對于任意的實(shí)數(shù)m,$|{m\overrightarrow a+(2-4m)\overrightarrow b}|$的最小值為( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案