17.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}2x+y≤10\\ x+2y≤14\\ x+y≥6\end{array}\right.$,則xy的最大值為( 。
A.$\frac{25}{2}$B.$\frac{49}{2}$C.12D.14

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用基本不等式進(jìn)行求解即可.

解答 解:法1:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖
由圖象知y≤10-2x,
則xy≤x(10-2x)=2x(5-x))≤2($\frac{x+5-x}{2}$)2=$\frac{25}{2}$,
當(dāng)且僅當(dāng)x=$\frac{5}{2}$,y=5時(shí),取等號(hào),
經(jīng)檢驗(yàn)($\frac{5}{2}$,5)在可行域內(nèi),
故xy的最大值為$\frac{25}{2}$,
法2:設(shè)z=xy,則y=$\frac{z}{x}$為雙曲線,
要使z=xy最大,則z>0,
∵由圖象可知當(dāng)z=xy與2x+y=10相切時(shí),z=xy取得最大值,
∴2x+$\frac{z}{x}$=10
即2x2-10x+z=0,
由判別式△=100-8z=0,得x=$\frac{100}{8}$=$\frac{25}{2}$,
即xy的最大值為$\frac{25}{2}$,
故選:A

點(diǎn)評(píng) 本題主要考查線性規(guī)劃以及基本不等式的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知A、B、C是平面內(nèi)共線的三個(gè)點(diǎn),P是平面內(nèi)的任意一點(diǎn),且滿足$\overrightarrow{PC}$=sinαcosβ$\overrightarrow{PA}$-cosαsinβ$\overrightarrow{PB}$,則α-β的一個(gè)可能值為( 。
A.-$\frac{π}{2}$B.0C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,ABCD是邊長(zhǎng)為3的正方形,DE⊥平面ABCD,AF∥DE,且DE=6,AF=2.
(1)試在線段BD上確定一點(diǎn)M的位置,使得AM∥平面BEF;
(2)求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=lnx+$\frac{4f'(2)}{x}$的圖象在點(diǎn) P(2,f(2))處切線的斜率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,所有棱長(zhǎng)都為2的正三棱柱BCD-B'C'D',四邊形ABCD是菱形,其中E為BD的中點(diǎn).
(1)求證:平面BC'D∥面AB'D';
(2)求證:平面C'CE⊥平面AB'D'.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在△ABC中,已知角A,B,C的對(duì)邊分別為a,b,c,且a=bcosC+csinB,則角B為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,正方形ABCD的邊長(zhǎng)為3,點(diǎn)E,F(xiàn)分別在邊AB,BC上,且$\frac{AE}{EB}$=$\frac{CF}{FB}$=2,將此正方形沿DE,DF折起,使點(diǎn)A,C重合于點(diǎn)P,若O為線段EF任一點(diǎn),DO與平面PEF所成的角為θ,則tanθ的最大值是$\frac{3\sqrt{14}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=|x+$\frac{8}{m}}$|+|x-2m|(m>0).
(1)求函數(shù)f(x)的最小值;
(2)求使得不等式f(1)>10成立的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=alnx+$\frac{1}{2}$x2-ax(a為常數(shù))有兩個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)f(x)的兩個(gè)極值點(diǎn)分別為x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案