函數(shù)y=(
1
2
)
x2-4x+2
的遞增區(qū)間是
 
考點:指數(shù)型復合函數(shù)的性質(zhì)及應用
專題:函數(shù)的性質(zhì)及應用
分析:令t=x2-4x+2,則y=(
1
2
)
t
,本題即求函數(shù)t的減區(qū)間,再利用二次函數(shù)的性質(zhì)可得函數(shù)t的減區(qū)間.
解答: 解:令t=x2-4x+2=(x-2)2-2,則y=(
1
2
)
t
,本題即求函數(shù)t的減區(qū)間,
再利用二次函數(shù)的性質(zhì)可得函數(shù)t的減區(qū)間為(-∞,2],
故答案為:(-∞,2].
點評:本題主要考查復合函數(shù)的單調(diào)性,指數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在區(qū)間[1,4]內(nèi)取數(shù)a,在區(qū)間[0,3]內(nèi)取數(shù)b,則函數(shù)f(x)=
1
4
x2+
a
x+(5-b)有兩個相異零點的概率是( 。
A、
5
6
B、
7
9
C、
1
9
D、
2
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若α∈(
π
2
,π),且2cos2α=sin(
π
4
-α),則sin2α的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx+bx的圖象在點(1,-3)處的切線的方程為y=-2x-1.
(1)若對任意x∈[
1
3
,+∞)有f(x)≤m恒成立,求實數(shù)m的取值范圍;
(2)若函數(shù)y=f(x)+x2+2在區(qū)間[k,+∞)內(nèi)有零點,求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)是二次多項式函數(shù),且f(a)=f(b)=0(a≠b),f(
a+b
2
)=m,求f(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
sin70°+sin50°
sin80°
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,已知∠ABC=45°,O在AB上,且OB=OC=
2
3
AB,又P0⊥平面ABC,DA∥PO,DA=AO=
1
2
PO.
(I)求證:PB∥平面COD;
(II)求二面角O-CD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+bx+c在點(1,f(1))處的切線方程為2x-y-2=0.
(1)求實數(shù)b、c的值;
(2)求函數(shù)g(x)=(f(x)-x3)ex在區(qū)間[t,t+1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當0≤x≤2π時,則不等式:sinx-cosx≥0的解集是
 

查看答案和解析>>

同步練習冊答案